• Title/Summary/Keyword: Electromagnetic actuator

Search Result 226, Processing Time 0.023 seconds

A Experiment of the damping effect for Electromagnetic Damper using DC Motor and Ballscrew (DC Motor와 Ballscrew를 이용한 Electromagnetic Damper Damping 효과 실험)

  • Kang, Jeong-Ho;Lee, Hac-Choel;Jeong, Young-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.124-126
    • /
    • 2008
  • In this Paper, the modeling of the electromagnetic damper for automobile suspension is presented and the validation of the model is demonstrated by experiments. An electromagnetic damper, composed of a rotary DC motor, and a ball screw and nut. The damper then operates as a linear electric actuator. The damper then operate as a linear electric actuator. The results indicate the proposed system is feasible and it is proved that the electromagnetic damper has better than oil damper of passive control system.

  • PDF

Design of Solenoid Actuator for FCV Cylinder Valve Considering Structural Safety (구조 안전성을 고려한 수소 연료 전지차 용기 밸브의 솔레노이드 액추에이터 설계)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Shin, Jin Oh;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.157-163
    • /
    • 2016
  • Green vehicles include electric vehicles, natural gas vehicles, fuel cell vehicles (FCV), and vehicles running on fuel such as a biodiesel or an ethanol blend. An FCV is equipped with a cylinder valve installed in an ultra-high pressure vessel to control the hydrogen flow. For this purpose, an optimum design of the solenoid actuator is necessary to ensure reliability when driving an FCV. In this study, an electromagnetic field analysis for ensuring reliable operation of the solenoid actuator was conducted by using Maxwell V15. The electromagnetic field analysis was performed by magnetostatic technique, according to the distance between magnetic poles in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and measurement results. From the results, the error of attraction force ranged from 4.53 % to 9.05 % at testing conditions.

Development of Design Program for ON/OFF Type Solenoid Actuator (개폐식 솔fp노이드 액츄에이터용 설계 프로그램 개발)

  • Sung, Baek-Ju;Lee, Eun-Woong;Kim, Hyoung-Eui
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.929-931
    • /
    • 2002
  • For design of On/Off type solenoid actuator, designer must have the experimental knowledge as well as general electromagnetic formulas to design object. It is possible for theoretical knowledge to do the out-line design, but it is impossible to optimal design without experimental knowledge which only can achieve through many repeated experiments. In addition, in present On/Off type solenoid actuator field, smaller, lightening, lower consumption power, high response time are effected as the most important design factor. So, experimental knowledge is more needed for optimal design of solenoid actuator. In this study, we developed a design program composed electromagnetic theories and experimental parameter values for inexperienced designers. And we proved the propriety of this program by experiments.

  • PDF

Development of Moving Magnet Type Optical Pickup Actuator (가동자석형 광 픽업 엑츄에이터의 개발)

  • Hur, Young-Jun;Kim, Yoon-Ki;Song, Myeong-Gyu;Kim, Sang-Ryong;Park, No-Cheol;Yoo, Jeong-Hoon;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • In this paper we suggested the moving magnet type actuator for optical disc drive which has high frequency of flexible mode. Generally, moving magnet type actuator has the advantage for increase the frequency of flexible mode. But it has low driving sensitivity due to the weight of its moving part. To overcome this shortcoming, we designed the model with the closed electromagnetic circuit for tracking direction. In addition, we improved the driving sensitivity and frequency of flexible mode by using of DOE (design of experiment) procedure for EM circuit. Consequently, it is verified that final designed model satisfied with the desired specifications.

  • PDF

Tilt analysis of optical pickup actuator using coupled fields analysis (연성해석을 이용한 광픽업 구동기 경사 해석)

  • 신창훈;김철진;이경택;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.684-687
    • /
    • 2002
  • In optical disk drive(ODD), pickup actuator, which comprises a key part of an optical disk drive equipment. must be thin. compact, and high sensitive. Low tilt is also an important requirement for the actuator, since optical disks are to high density. This tilt occurs from around the axis parallel to the tangential and radial direction of the disk. The main reason of the moment is the coupling effect between focus driving system and tracking driving system. This paper analyzed tut quantity due to focusing and tracking force through coupled fields analysts with electromagnetic analysis and structural analysis.

  • PDF

Design of Slim Actuator with Symmetric Electromagnetic Circuit (대칭형 자기회로를 갖는 슬림형 엑추에이터의 설계)

  • Woo, Jung-Hyun;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su;Oh, Young-Se;Kim, Ki-Beom
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Researches for actuator which is appropriate to slim optical disk drive (ODD) have been progressed for a long time. Various types of actuators are suggested to secure high performances with slim thickness. In this paper, the slim actuator with symmetric electromagnetic (EM) circuit is suggested to apply slim ODD. Various EM circuits are proposed to increase EM force in the focusing and the tracking directions. Flexible mode frequencies and driving sensitivities are increased by using stress distribution and design of experiment (DOE). Consequently, final model is suggested to have high flexible mode frequencies and driving sensitivities.

A Low Voltage Driven Electrostatic Micro Actuator with an Added Vertical Electrode for Optical Switching (추가된 수직전글을 구비한 저전압 구동의 광 스위칭용 정전구동 마이크로 액츄에이터)

  • Yoon, Yong-Seop;Bae, Ki-Deok;Choi, Hyung;Koh, Byung-Cheon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.55-59
    • /
    • 2003
  • With the progress of optical communication technology recently, the development of micro actuator using MEMS technology has been made for optical switching. The actuation types are various; electrostatic, electromagnetic, and electrostatic +electromagnetic etc. Among them, the electrostatic type is the most popular because of the relative ease of fabrication, integration and shielding as well as low power consumption. However, it needs a high voltage to generate a larger driving force. To overcome this problem, we proposed a new type of electrostatic actuator with an extra vertical electrode in addition to the horizontal one. The vertical electrode also lays a role of making the stable angular rotation as a stopper. From the theoretical analysis and experiment, we find the actuation voltage can be reduced up to 50 % of that of the conventional one.

Fabrication of an Electromagnetic Actuator with the Planar Coil (평면 코일을 이용한 전자 구동기 제작)

  • Jeong, Hyun-Ku;Kwon, Ki-Young;Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3295-3297
    • /
    • 1999
  • This paper presents the fabrication of an electromagnetic micro actuator consisting of a Parylene diaphragm with a spiral copper coil and a permanent magnet. The copper coil is fabricated by electroplating and patterning. The frequency response of the actuator are obtained using a laser vibrometer. When the input voltage is 3 V, the DC deflection is 5 ${\mu}m$, and the resonance frequency is about 35 Hz. Also, the mechanical sensitivity of the actuator diaphragm is 69 ${\mu}m/V$.

  • PDF

Dynamic Characteristic Analysis of Electric Actuator for 1 kV/3.2 kA Air Circuit Breaker Based on the Three-link Structure

  • Lee, Seung-Min;Kang, Jong-Ho;Kwak, Sang-Yup;Kim, Rae-Eun;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.613-617
    • /
    • 2011
  • In the present paper, a new type of electrical actuator, an electromagnetic force driving actuator (EMFA), applicable to air circuit breaker is developed and analyzed. Transient analysis is performed to obtain the dynamic characteristics of EMFA. The distribution of static magnetic flux is obtained using the finite element method. The coupled problems of electrics and mechanics governing equations are solved using the time-difference method. According to the interception rate of each contactor, investigation of the contactor spring load condition is conducted and applied to the threelink system. Comparisons of the dynamic characteristics of the three-link simulation and experimental data are performed.

Fabrication and experiment of the linear magnetostrictive actuator with electromagnetic clamp (자기변형소자를 이용한 선형 액츄에이터의 제작 및 실험)

  • Kim, Byung-Ho;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.419-421
    • /
    • 1994
  • A linear actuator using Terfenol-D rod which can accumulate displacement of the rod was fabricated. The diameter of used rod is 12[mm] and the length of it is 75[mm]. It adopts the electromagnetic units as the clamping units. Basic characteristics of the linear actuator such as displacement vs. current, velocity vs. frequency, step size vs. frequency were experimented. When the driving current is 1[A] and 100[Hz], the velocity of the actuator is about 3.5[mm/s]. We discussed the cause of step size's decrease as increasing driving frequency and the solution to the problem.

  • PDF