• 제목/요약/키워드: Electromagnetic Vibration Energy Harvester

검색결과 26건 처리시간 0.02초

교량 무선센서 전원공급용 전자기를 이용한 광대역 에너지 하베스트의 진동시스템에 관한 연구 (The research of energy harvester's the wideband vibration system from bridge for wireless sensor applications)

  • 한기봉;신동찬;김영철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.819-824
    • /
    • 2012
  • This paper presents the wideband vibration system of an electromagnetic vibration energy harvester that obtained electric power for wireless sensor applications from the ever-change vibrations of bridge. It is a system with two degree of freedom vibrations that are composed of two mass and two spring respectively. One system is housing mass and spring, the other is the magnetic mass and spring that is the vibration system construction's element of electromagnetic vibration energy harvester. In other words, it is called dynamic vibration absorber. This paper show that the ratio of housing mass to magnetic mass decides the bandwidth and the size of amplitude of magnetic mass in electromagnetic vibration energy harvester. Therefore, it is necessary to improve the efficiency of energy in electromagnetic vibration energy harvester for wireless sensor applications.

  • PDF

오픈소스 기반 빅데이터 플랫폼의 에너지 하베스터 최적설계 적용 연구 (Application of Open Source, Big Data Platform to Optimal Energy Harvester Design)

  • 유은섭;김석찬;이한민;문두환
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, as interest in the internet of things has increased, a vibration energy harvester has attracted attention as a power supply method for a wireless sensor. The vibration energy harvester can be divided into piezoelectric types, electromagnetic type and electrostatic type, according to the energy conversion type. The electromagnetic vibration energy harvester has advantages, in terms of output density and design flexibility, compared to other methods. The efficiency of an electromagnetic vibration energy harvester is determined by the shape, size, and spacing of coils and magnets. Generating all the experimental cases is expensive, in terms of time and money. This study proposes a method to perform design optimization of an electromagnetic vibration energy harvester using an open source, big data platform.

Design and Analysis of a Vibration-Driven Electromagnetic Energy Harvester Using Multi-Pole Magnet

  • Munaz, Ahmed;Chung, Gwiy-Sang
    • 센서학회지
    • /
    • 제21권3호
    • /
    • pp.172-179
    • /
    • 2012
  • This paper presents the design and analysis of a vibration-driven electromagnetic energy harvester that uses a multi-pole magnet. The physical backgrounds of the vibration electromagnetic energy harvester are reported, and an ANSYS finite element analysis simulation has been used to determine the different alignments of the magnetic pole array with their flux lines and density. The basic working principles for a single and multi-pole magnet are illustrated and the proposed harvester has been presented in a schematic diagram. Mechanical parameters such as input frequency, maximum displacement, number of coil turns, and load resistance have been analyzed to obtain an optimized output power for the harvester through theoretical study. The paper reports a maximum of 1.005 mW of power with a load resistance of $1.9k{\Omega}$ for 5 magnets with 450 coil turns.

스프링이 없는 진동형 전자기식 에너지 하베스터의 제작과 그 특성 (Fabrication of Vibration-Driven Electromagnetic Energy Harvester with Spring-Less and Its Characteristics)

  • 류경일;정귀상
    • 센서학회지
    • /
    • 제20권4호
    • /
    • pp.249-253
    • /
    • 2011
  • This paper describes the fabrication and characteristics of vibration-driven electromagnetic energy harvester without spring to use at low frequency like a human body motion. The implemented energy harvester consists of NdFeB magnets, copper coil. The optimization of induced voltage was done by the various widths of coil, number of the turns, size of fixed and moving magnets and thicknesses of the cylinder. The fabricated energy harvester is capable of producing up to 15.0 $V_{pp}$ for basic model and 28.80 $V_{pp}$ for improved model at 5.0 Hz resonance frequency and 0.75 g acceleration level. The basic model and improved model are provided a maximum power of 6.375 mWand 25.831 mW at 1 KHz of load resistance in rectifier circuit.

저주파수에서 고출력을 갖는 진동형 전자기식 에너지 하베스터의 설계 및 해석 (Design and Analyses of Vibration Driven Electromagnetic Energy Harvester with High Power Generation at Low Frequency)

  • 정귀상;류경일
    • 센서학회지
    • /
    • 제20권1호
    • /
    • pp.25-29
    • /
    • 2011
  • This paper describes the design and analyses of vibration driven electromagnetic energy harvester with high power generation which is suitable for supplying power generator from human body motion. The proposed harvester consists of magnet, coil, and SM (Soft magnetic Material). In order to generate more induced voltage, the SM to concentrate flux lines from end of magnetic poles was arranged into insert moving magnet. Each model was designed and analyzed by using ANSYS software to simulation. The maximum power is generated when load resistance of $1303\;{\Omega}$ is equal to coil resistance. The generated maximum power of for harvesters with SM is $677.85\;{\mu}W$ and 5.46 times higher than without SM at 6 Hz vibration frequency.

신체의 움직임을 통한 센서 및 전기장치 전원공급용 에너지 하베스터 설계 (Design of Kinetic Energy Harvester for Body-worn Sensors and Personal Electric Devices)

  • 서종호;이한민;오재응;김영철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.415-418
    • /
    • 2013
  • This paper presents an electromagnetic kinetic energy harvester which is suitable for supplying power for body-worn sensors and personal electric devices. Human motions are investigated by measuring the acceleration signal at each points of the body during walking and running. The dynamic characteristics of the harvester can be calculated from the transfer function of the system. The transduction factor can be calculated from the electromagnetic field analysis by Maxwell software. The prototype of the harvester is designed and manufactured. The theoretical power characteristics are compared with the experiment results.

  • PDF

Design and Analysis of a Vibration-driven AA Size Electromagnetic Energy Harvester Using Magnetic Spring

  • Foisal, Abu Riduan Md.;Chung, Gwiy-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권3호
    • /
    • pp.125-128
    • /
    • 2012
  • This paper describes the design, simulation and characterization of an AA size electromagnetic energy harvester that is capable of converting environmental vibration into electrical energy. A magnetic spring technique is used to scavenge energy from low frequency external vibrations. The generator is characterized by ANSYS 2D finite element analysis, and optimized in terms of moving mass, fixed magnet size, coil width and load resistance. The optimized energy harvester is able to generate 53.5 mW of average power at 8.1 Hz resonance frequency, with a displacement of 0.5 mm.

진동 구동식 원통형 전자기 에너지 하베스터의 설계 및 해석 (Design and Analysis of Vibration Driven Cylindric Electromagnetic Energy Harvester)

  • 정귀상;류경일
    • 한국전기전자재료학회논문지
    • /
    • 제23권11호
    • /
    • pp.906-910
    • /
    • 2010
  • This paper describes the design and analysis of vibration driven cylindric electromagnetic energy harvester. The proposed harvester consists with spring, coil and rear earth magnet. The design utilizes an electromagnetic transducer and its operating principle is based on the relative movement of a magnet pole with respect to a coil. In order to optimal design and analysis, ANSYS FEA (Finite Elements Analysis) and Matlab model were used to predict the magnetic filed density with vibration and the generated maximum output power with load resistance. The system was designed for 6 Hz of natural frequency and spring constant was 39.48 N/m between 2 mm and 6 mm of displacement in moving magnet. When moving magnet of system was oscillated, each model was obtained that induced voltage in the coil was generated 2.275 Vpp, 2.334 Vpp and 2.384 Vpp, respectively. Then maximum output powers of system at load resistance ($1303{\Omega}$) were generated $124.2{\sim}132.2\;{\mu}W$ during magnets input displacement of 3 mm and 6 Hz periodic oscillation.

저 주파수용 FR-4 스프링 기반 고효율 진동형 전자기식 에너지 하베스터의 설계 및 제작 (Design and Fabrication of a Low Frequency Vibration Driven High-Efficiency Electromagnetic Energy Harvester)

  • 이병철;정귀상
    • 센서학회지
    • /
    • 제21권4호
    • /
    • pp.298-302
    • /
    • 2012
  • This paper describes the design and fabrication of a low frequency vibration driven high-efficiency electromagnetic energy harvester based on FR(Flame Resistance)-4 spring which converts mechanical energy into useful electrical power. The fabricated generator consists of a vertically polarized NdFeB permanent magnet attached to the center of spring and a planar type copper coil which has higher efficiency compare with cylindrical type coil. ANSYS finite analysis and Matlab were used to determine the resonance frequency and output power. The generator is capable of producing up to 1.36 $V_{pp}$ at 9 Hz, which has the maximum power of 639 ${\mu}W$ with a load resistance of $3.25k{\Omega}$.

Compact electromagnetic vibration suppressor and energy harvester; an experimental study

  • Aref Afsharfard;Hooman Zoka;Kyung Chun Kim
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.217-225
    • /
    • 2024
  • In this study, an electromagnetic dynamic vibration suppressor and energy harvester is designed and studied. In this system, a gear mechanism is used to convert the linear motion to continuous rotary motion. Governing equations of motion for the system are derived and validated using the experimental results. Effects of changing the main parameters of the presented system, such as mass ratio, stiffness ratio and gear ratio on the electro-mechanical behavior of system are investigated. Moreover, using so-called Weighted Cost Function, the optimum parameters of the system are obtained. Finally, it is shown that the presented electromagnetic dynamic vibration absorber not only can reduce the undesired vibration of the main system but also it can harvest acceptable electrical energy.