DOI QR코드

DOI QR Code

Design and Analysis of Vibration Driven Cylindric Electromagnetic Energy Harvester

진동 구동식 원통형 전자기 에너지 하베스터의 설계 및 해석

  • 정귀상 (울산대학교 전기전자정보시스템공학부) ;
  • 류경일 (울산대학교 전기전자정보시스템공학부)
  • Received : 2010.04.22
  • Accepted : 2010.10.14
  • Published : 2010.11.01

Abstract

This paper describes the design and analysis of vibration driven cylindric electromagnetic energy harvester. The proposed harvester consists with spring, coil and rear earth magnet. The design utilizes an electromagnetic transducer and its operating principle is based on the relative movement of a magnet pole with respect to a coil. In order to optimal design and analysis, ANSYS FEA (Finite Elements Analysis) and Matlab model were used to predict the magnetic filed density with vibration and the generated maximum output power with load resistance. The system was designed for 6 Hz of natural frequency and spring constant was 39.48 N/m between 2 mm and 6 mm of displacement in moving magnet. When moving magnet of system was oscillated, each model was obtained that induced voltage in the coil was generated 2.275 Vpp, 2.334 Vpp and 2.384 Vpp, respectively. Then maximum output powers of system at load resistance ($1303{\Omega}$) were generated $124.2{\sim}132.2\;{\mu}W$ during magnets input displacement of 3 mm and 6 Hz periodic oscillation.

Keywords

References

  1. S. A. Wilson and R. P. Jourdain, Mat. Sci. Eng. R, 56, 1 (2007). https://doi.org/10.1016/j.mser.2007.03.001
  2. S. P. Beeby, M. J. Tudor, and N. M. White, Meas. Sci. Technol., 17, 175 (2006). https://doi.org/10.1088/0957-0233/17/12/R01
  3. S. R, Anton and H. A. Sodano, Smart Mater. Struct., 16, R1 (2007). https://doi.org/10.1088/0964-1726/16/3/R01
  4. S. Roundy, P. K. Wright, and K. S. J. Pister, Proc. IMECE, 17 (2002).
  5. D. P. Arnold, IEEE Trans. Magn., 43, 3940 (2007). https://doi.org/10.1109/TMAG.2007.906150
  6. C. B. Williams and R. B. Yates, SENSOR ACTUAT A-PHYS, 52, 8 (1996). https://doi.org/10.1016/0924-4247(96)80118-X
  7. T. V. Buren and G. Trsster, SENSOR ACTUAT A-PHYS, 135, 765 (2007). https://doi.org/10.1016/j.sna.2006.08.009
  8. S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O'Donnell, C. R. Saha, and S. Roy, J. Micromech. Microeng., 17, 1257 (2007). https://doi.org/10.1088/0960-1317/17/7/007
  9. P. H. Wang, X. H. Dai, D. M. Fang, and X. L. Zhao, Microelectron. J., 38, 1175 (2007). https://doi.org/10.1016/j.mejo.2007.10.002
  10. P. Glynne-Jones, M. J. Tudor, S. P. Beeby, and N. M. White, SENSOR ACTUAT A-PHYS, 110, 344 (2004). https://doi.org/10.1016/j.sna.2003.09.045
  11. B. J. Bowers and D. P. Arnold, Tech. Dig. 8th Int. Workshop on Micro and Nanotechnology for power Gneration and Energy Conversion Apps. Sendai, Janpan, Nov, 281 (2008).