• Title/Summary/Keyword: Electromagnetic Coupling

Search Result 585, Processing Time 0.026 seconds

Design of Multiband Repeater Antenna with Fire-Fighting Band for In-Building Mobile Communication (소방무선대역을 포함하는 인빌딩용 다중대역 중계기 안테나 설계)

  • Kim, Sung-Min;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.495-503
    • /
    • 2016
  • This paper proposes the design of multiband repeater antenna with fire-fighting band for in-building mobile communication. The proposed antenna is composed of a center monopole and 4 parasitic elements on a circular plate. In order to realize good reflection coefficients at the multiband, mutual coupling between 4 parasitic elements and center monopole antenna is considered. The important parameters such as distance between parasitic element and a center monopole, and each height of a center monopole and 4 parasitic elements are simulated to obtain good antenna characteristics at the multiband. The diameter of 4 parasitic elements and a center monopole was fixed to 10 mm for easy design and manufacturing. The measurement results of reflection coefficients, 2-D patterns and gain agreed well with their simulation ones.

A Slotted Triangular-Patch Type Artificial Transmission Line Coupler (슬롯을 가진 삼각 패치형 인공 전송 선로 결합기)

  • Oh, Song-Yi;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.5
    • /
    • pp.510-515
    • /
    • 2011
  • In this paper, an artificial transmission line coupler with slotted-triangular patches, which is compact and spacesaving structure, is proposed. The proposed structure has specific features of not only convenience for adjusting the characteristic impedance and the phase of its coupled line by varying the lengths of the slots of the artificial transmission lines in designing a coupler but also the maximized coupling value at less than ${\lambda}$/4 electrical length so that it can be designed in compact and small dimensions, while conventional coupled line couplers are generally limited in compact and miniaturized designs by their ${\lambda}$/4 transmission lines. A fabricated 15 dB test-coupler at 2.4 GHz band by proposed design method shows good agreement with theory and simulation.

Design of Printed Circuit Board for Clock Noise Suppression in T-DMB RF Receiver (지상파 DMB RF 수신기에서 클락 잡음 제거를 위한 인쇄 회로 기판 설계)

  • Kim, Hyun;Kwon, Sun-Young;Shin, Hyun-Chol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1130-1137
    • /
    • 2009
  • This paper proposes a new clock routing design for suppressing clock harmonic effects in a Printed Circuit Board (PCB) for a terrestrial Digital Multimedia Broadcasting(DMB) system. Typical crystal reference frequencies that are widely used in DMB tuners are 16.384 MHz, 19.2 MHz, 24.576 MHz. When the high-order harmonic components of these reference frequencies fall near the RF channel frequencies, receiver sensitivity of the tuners is seriously degraded. In this work, we propose a new clock routing design in order to address the clock harmonic coupling issue. The proposed design incorporates two inductors for isolating the clock ground from the main ground, and adopts a new strip line-style routing instead of the conventional microstrip line style routing to minimize the overlap area with the main ground. As a result, the RF sensitivity of the T-DMB tuner is improved by 2 dB.

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

Influence of track irregularities in high-speed Maglev transportation systems

  • Huang, Jing Yu;Wu, Zhe Wei;Shi, Jin;Gao, Yang;Wang, Dong-Zhou
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.571-582
    • /
    • 2018
  • Track irregularities of high-speed Maglev lines have significant influence on ride comfort. Their adjustment is of key importance in the daily maintenance of these lines. In this study, an adjustment method is proposed and track irregularities analysis is performed. This study considers two modules: an inspection module and a vehicle-guideway coupling vibration analysis module. In the inspection module, an inertial reference method is employed for field-measurements of the Shanghai high-speed Maglev demonstration line. Then, a partial filtering, integration method, resampling method, and designed elliptic filter are employed to analyze the detection data, which reveals the required track irregularities. In the analysis module, a vehicle-guideway interaction model and an electromagnetic interaction model were developed. The influence of the measured line irregularities is considered for the calculations of the electromagnetic force. Numerical integration method was employed for the calculations. Based on the actual field detection results and analysis using the numerical model, a threshold analysis method is developed. Several irregularities modalities with different girder end's deviations were considered in the simulations. The inspection results indicated that long-wavelength irregularities with larger girder end's deviations were the dominant irregularities. In addition, the threshold analysis of the girder end's deviation shows that irregularities that have a deviation amplitude larger than 6 mm and certain modalities (e.g., M- and N-shape) are unfavorable. These types of irregularities should be adjusted during the daily maintenance.

The Design of Elliptic Function Bandpass Filter using Ceramic Coaxial Resonators (유전체 동축 공진기를 이용한 타원 함수 대역 통과 여파기의 설계)

  • 김정제;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.805-814
    • /
    • 1999
  • In this paper, elliptic function bandpass filters using ceramic coaxial resonators are designed. Since elliptic function filters have better performance of frequency selectivity than those based on Butterworth or Chebyshev, therefore it is possible to make better use of limited frequency resources. Elliptic function bandpass filters using ceramic coaxial resonators are designed for reducing it's size, weight, cost and for easy manufacturing and tuning. From measurements, an accurate resonator model is obtained and the coupling coefficient values are extracted. Based on these results, elliptic function bandpass filters are designed. The experimental results have shown that the 8th order elliptic function filter of 959 MHz center frequency with 28 MHz bandwidth using coaxial ceramic resonators have about more tan 17 dB return loss, 5 dB insertion loss, more than 20 dB attenuation at $f_c\pm$5 MHz.

  • PDF

Isolation Improvement of a Broadband Antenna Using a High-Permeability Substrate (고투자율 자성기판을 이용한 광대역 안테나 격리도 특성 개선)

  • Hur, Jun;Kay, Youngchul;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • In this paper, we propose a method of isolation improvement for broadband antennas using a high-permeability substrate. The substrate is applied for a planar monopole antenna based on near-field analysis to maintain radiation characteristics at its operating frequency while improving isolation by minimizing mutual coupling with nearby antennas at other frequency bands. To verify isolation improvement, we compare performance variations of $S_{21}$ according to the existence of the substrate using the proposed antenna and a reference antenna whose operating frequency is 2 GHz. As a result, the radiation characteristics are maintained, and $S_{21}$ performance is improved by more than 5~10 dB in the frequency band of greater than 2 GHz, which demonstrates the isolation can be improved by using the high-permeability substrate.

Dual Band Printed Monopole Antenna Using Spiral and Meander Structure (스파이럴과 미앤더 구조를 이용한 이중 대역 인쇄형 모노폴 안테나)

  • Cheong, Sae-Han-Sol;Jung, Jin-Woo;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.625-630
    • /
    • 2011
  • In this paper, spiral meander monopole printed antenna for dual band operation in GPS(1.57~1.577 GHz) and WiBro(2.3~2.4 GHz), WLAN(2.4~2.48 GHz) is proposed. Spiral(positive coupling) mounted end of monopole(small current) and meander mounted fed of monopole(big current) for reduce frequency ratio. Bandwidth(-10 dB) of the antenna is measured 130 MHz(1.49~1.62 GHz) in basic resonance frequency and 330 MHz(2.29~2.62 GHz) in harmonic resonance frequency($3{\lambda}_H/4$). The peak antenna gains are measured 2.86 dBi in GPS(1.57 GHz), and 3.49 dBi in WiBro(2.35 GHz), and 3.71 dBi in WLAN(2.44 GHz).

A Method of ISAR Geometric Calibration for Point Target Using Impulse-Radio UWB (임펄스 초광대역 레이다를 이용한 점표적의 ISAR 기하 보정 방법)

  • Yu, Jiwoong;Nikitin, Konstantin;Paek, Inchan;Jang, Jong Hun;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • In this paper, a method of ISAR geometric calibration is represented by using impulse-radio UWB radar. The ir-UWB is good for using a signal processing in time domain, so, it does not occur a multi-path or coupling problem. If a signal that between antennas and target is assumed a plane wave, a center of rotation in ISAR geometry model can be estimated by using point target. Before image is reconstructed with sinogram, the center of rotation can be calculated by using least square fitting. This method can be obtained a more contrast image, and a maximum value of entropy of image. The method, that estimates a center of rotation in received data, will be used a initial setup of instruments or a periodic compensation to reconstruct image. It would be useful in medical, security and surveillance imaging equipments that have a fixed geometry.

A UWB Antenna with the Adjustable Second Rejection Band Using a SIR (SIR을 이용한 제 2저지 대역 제어 가능 UWB 안테나)

  • Choi, Hyung-Seok;Choi, Kyung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1019-1024
    • /
    • 2012
  • In this paper, a UWB antenna using a SIR(Step Impedance Resonator) that eliminate signal interference at 5 GHz WLAN as the first rejection band and adjust the second rejection band is proposed. Unlike the unit impedance resonator, the second harmonic of SIR is decided according to step impedance. Therefore, To adjust the second rejection band, SIR is applied to UWB antenna. Also, the equivalent circuit of the antenna at first rejection band is presented and the equivalent modeling values of the SIR and the coupling value is obtained. The proposed antenna is satisfied to cover full UWB band with return losses less than -10 dB and has band rejection characteristic in 5 GHz WLAN band. The radiation patterns show +y directivity characteristics in H-plane and the group delay variations are within 1.0 ns.