• Title/Summary/Keyword: Electromagnetic Coupling

Search Result 586, Processing Time 0.022 seconds

Study of Hydrodynamic-Magnetic-Thermal Coupling in a Linear Induction MHD Pump

  • Kadid, Fatima Zohra;Drid, Said;Abdessemed, Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.249-254
    • /
    • 2009
  • This article deals with the analysis of a coupling between stationary Maxwell's equations, the transient state Navier-Stokes and thermal equations. The resolution of these equations is obtained by introducing the magnetic vector potential A, the vorticity ${\xi}$, the stream function ${\psi}$ and the temperature T. The flux density, the electromagnetic thrust, the electric power density, the velocity, the pressure and the temperature are graphically visualized. Also, the influence of the frequency is presented.

Wireless power transmission using LC resonant with cores (자기 유도 방식과 LC 공진을 이용한 무선 전력 전송기기)

  • Lee, Seung-Hwan;Kim, Hyun-Min;Kim, Hee-Je
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.25-26
    • /
    • 2012
  • Wireless power transmission introduced by Tesla has instrumented by many scientists of the world. This technique first was utilized as wireless communications such as radio in long range transmission. And contactless transmission using inductive property was used on white goods. In 2007, MIT' lab introduced that new wireless power transmission by magnetic resonance which has about 50% efficiency and 2M transmission distances, it was a chance to refocus a new possibility of wireless power transmission. In this paper, using LC coupling compensate the short distances of contactless transmission, this simple method could transmit about 30cm distances. Using this approach, it can be solved the short transmission distances, a drawback of Electromagnetic inductive coupling method.

  • PDF

A Feedback Circuit of Effective Wireless Power Transfer for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.480-483
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smartphone to high power electric railroad. In this paper, the model of wireless power transfer circuit for the low power system is designed for a resonant frequency of 13.45 MHz. Also, a feedback WPT circuit to improve the power transfer efficiency is proposed and shown better performance than the original open WPT circuit, and the methodology for power efficiency improvement is studied as the coupling coefficient increases above 0.01, at which the split frequency is made.

Theoretical study of Electromagnetic Waves in Chiral media: about Nonlinearity & Multilayers (Chiral 매질에서, 전자기파의 비선형성과 여러겹 구조에서의 Coupled-mode theory에 관한 연구)

  • Jeong, Yoon-Chan;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.547-551
    • /
    • 1995
  • We analyze the nonlinearity of chiral media and coupled-mode theory of chiral multilayers. In first topic, second order nonlinear coupled equations are constructed and a phase matchine method is suggested. This approach can be developed to higher order nonlinearity and electric-field-induced second harmonic generation. In second topic, coupled mode equation in chiral multilayers is constructed, and solved for both codirectional coupling and contradirectional coupling. There is a previous formulation about chiral mutilayers[1] with 4$\times$4 matrix but it did not give detail results, so this approach will be compared with that.

  • PDF

Microprocessor-Based Vector Control System for Induction Motor Servo- Drive (유도전동기 서보운전을 위한 마이크로프로세서-벡터 제어 시스템)

  • 김광헌;김영렬;원충연;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1218-1229
    • /
    • 1991
  • The time optimal position control design can be repeatedly taken from the initial state of a dynamic system to a desired one as fast as possible in the industrial drives. In this case, an induction machine parameters will vary due to temperature, frequency, and saturation effects. In particular, the rotor resistance changes critically with temperature and frequency. These changes affect the command values of the stator current components and slip speed. There is a mismatch between the commanded variables and actual ones of the induction motor drive, and this situation leads to coupling of the vector controller from the plant, i.e. the induction motor . Consequences of such a coupling include the initiation of oscillations of the rotor flux and unsuitable switching of electromagnetic torque for the induction motor servo drive. Therefore, this paper describes a rotor resistance parameter compensating method for the induction motor, And the validity of the proposed design method is confirmed by simulation studies and experiment results.

  • PDF

Proposed Equivalent Circuit and Parameter Identification Method for Electro-Magnetic Resonance Based Wireless Power Transfer

  • Kawamura, Atsuo;Kim, Tae-Woong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.799-807
    • /
    • 2013
  • The proper equivalent circuit is newly presented for electro-magnetic resonance based wireless power transfer. Based on the proposed equivalent circuit of open-ended helical antennas, the parameter identification of helical antennas can be well derived for highly efficient wireless power transfer. The well-established equivalent circuit in high frequency ranges is developed for analyzing a resonance enhanced-electromagnetic coupling helical antennas and the unknown parameters for helical antennas are identified by experiments. The effectiveness based on the proposed equivalent circuit is verified through experiments.

Heat Transfer Analysis of Coupled Electromagnetic-Thermal Field for Power Transformer (전자계-열계 결합해석에 의한 전력용 변압기의 열전달 해석)

  • Ahn, Hyun-Mo;Oh, Yeon-Ho;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2155-2161
    • /
    • 2009
  • In this paper, we dealt with the electro-thermal coupling analysis for temperature prediction of power transformer. Heat transfer coefficient are calculated using Nusselt number in accordance with heat source generated from transformer windings and core materials. The calculated temperatures in power transformer were compared to those of measured ones and showed good agreement. This coupling method using heat transfer coefficient can be used at the design stage of power transformer efficiently.

A P-HIERARCHICAL ERROR ESTIMATOR FOR A FEM-BEM COUPLING OF AN EDDY CURRENT PROBLEM IN ℝ3 -DEDICATED TO PROFESSOR WOLFGANG L. WENDLAND ON THE OCCASION OF HIS 75TH BIRTHDAY

  • Leydecker, Florian;Maischak, Matthias;Stephan, Ernst P.;Teltscher, Matthias
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.139-170
    • /
    • 2013
  • We extend a p-hierarchical decomposition of the second degree finite element space of N$\acute{e}$d$\acute{e}$lec for tetrahedral meshes in three dimensions given in [1] to meshes with hexahedral elements, and derive p-hierarchical decompositions of the second degree finite element space of Raviart-Thomas in two dimensions for triangular and quadrilateral meshes. After having proved stability of these subspace decompositions and requiring certain saturation assumptions to hold, we construct a local a posteriori error estimator for fem and bem coupling of a time-harmonic electromagnetic eddy current problem in $\mathbb{R}^3$. We perform some numerical tests to underline reliability and efficiency of the estimator and test its usefulness in an adaptive refinement scheme.

FDTD Analysis of the Mutual Coupling Between Closely Placed IFAs (근접한 IFA 사이의 신호결합에 대한 FDTD 해석)

  • Ji, Ki-Man;Lee, Soo-Jin;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.106-115
    • /
    • 2010
  • Because of space limitations, interferences between antennas of the KSLV-I communication systems occur and their effects become worse during all sorts of tests such as the flight test using a light plane. In this paper, coupled signal magnitude is calculated using the FDTD method. The theory of the FDTD, absorbing boundary condition, source input technique, and post processing of data are explained. The calculated coupling factor between two IFAs, which have 2 GHz resonance frequency and placed 5 cm apart, is -12.7 dB. Applied coupling calculation method can be effectively used for KSLV-I performance analysis, subsystem design, antenna arrangement, and communication link budget for the next space launch vehicle.

Design and Fabrication of an Ultra-low Partial Discharge Measurement System (극미소 부분방전 측정시스템의 설계 및 제작)

  • Seo, Hwang-Dong;Song, Jae-Yong;Moon, Seung-Bo;Kil, Gyung-Suk;Kwon, Jang-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.208-211
    • /
    • 2005
  • This paper presents an ultra-low partial discharge(PD) measurement system that has been accepted as a non-destructive method to estimate electrical insulation of low-voltage electric devices. The PD measurement system is composed of a coupling network, a low noise amplifier, and associated electronics. A shielding box is used to make a better condition against electromagnetic interference. A low cut-off frequency of the coupling network was 1MHz(-3 dB). Calibration tests on laboratory set-up have shown that the PD measurement system has a stable sensitivity of 11.4mV/pC. In an application experiment on a low-voltage induction motor(5HP), we could detect 0.77pC level of partial discharge pulse at the applied voltage of AC 664 V$_{peak}$.

  • PDF