FDTD Analysis of the Mutual Coupling Between Closely Placed IFAs

근접한 IFA 사이의 신호결합에 대한 FDTD 해석

  • Received : 2009.12.21
  • Accepted : 2010.07.01
  • Published : 2010.07.01

Abstract

Because of space limitations, interferences between antennas of the KSLV-I communication systems occur and their effects become worse during all sorts of tests such as the flight test using a light plane. In this paper, coupled signal magnitude is calculated using the FDTD method. The theory of the FDTD, absorbing boundary condition, source input technique, and post processing of data are explained. The calculated coupling factor between two IFAs, which have 2 GHz resonance frequency and placed 5 cm apart, is -12.7 dB. Applied coupling calculation method can be effectively used for KSLV-I performance analysis, subsystem design, antenna arrangement, and communication link budget for the next space launch vehicle.

KSLV-I 통신 시스템에 사용되는 안테나는 장착 위치가 제한되어 있어 안테나 상호간의 간섭현상이 발생하며 경항공기를 이용한 비행시험 등 각종 시험에서 이러한 간섭 현상의 영향은 더욱 증가한다. 본 논문에서는 FDTD 해석기법을 사용하여 인접한 안테나 사이의 결합량을 계산하였다. 결합량 계산을 위하여 사용된 FDTD 해석 기법에 대한 이론과 흡수 경계조건, 전압인가 방법, 결과 데이터 처리 기법을 설명하였다. 이격 거리가 5 cm이고 공진주파수가 2 GHz인 IFA 사이의 결합량은 -12.7 dB로 계산되었다. 본 논문에서 소개된 결합량 계산 방법은 KSLV-I의 시스템 성능을 분석하거나 향후 발사체의 설계에 있어서 하부시스템의 설계, 안테나 배치, 통신 링크 계산에 유용하게 사용될 수 있다.

Keywords

References

  1. C. M. Furse, S. P. Mathur, and O. P. Gandhi, "Improvements of the finite-difference time-domain method for calculating the radar cross section of a perfectly conducting target," IEEE Trans. Microwave Theory and Tech., vol. MTT-38, pp. 919-927, July 1990.
  2. K. Xiao, D.J. Pommerenke, and J. L. Drewniak, "A three-dimensional FDTD subgridding algorithm with separated temporal and spatial interfaces and related stability analysis", IEEE Trans. Ant. Propag. vol. 55, pp. 1981-1990, 2007. https://doi.org/10.1109/TAP.2007.900180
  3. J.-P. Bérenger, "Three Dimensional Huygens Subgridding for FDTD," IEEE Int. Symp. Antennas. Propagat., 2009.
  4. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagation, vol. AP-17, pp. 585-589, 1996.
  5. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Anten. and Prop., vol.43, pp. 1460-1463, Dec. 1995. https://doi.org/10.1109/8.477075
  6. D. M. Sullivan, "An unsplit step 3-D PML for use with the FDTD method," IEEE Microwave and Guided Wave Letters, vol. 7, pp. 184-186, July 1997. https://doi.org/10.1109/75.594858
  7. R. Luebbers, F. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequencydependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromag. Compat., vol. EMC-32, pp. 222-227, Aug. 1990.
  8. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, Boca Raton, FL, CRC Press, 1993.
  9. A. Taflove, S. C. Hagness, Computation Electrodynamics : The Finite-Difference Time-Domain Method, 2nd Edition. Boston, MA : Artech House, 2000.
  10. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method. N.Y. : IEEE Press, 2000.
  11. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., vol. 114, pp. 185-200, 1994. https://doi.org/10.1006/jcph.1994.1159