• Title/Summary/Keyword: Electromagnetic Coupling

Search Result 585, Processing Time 0.024 seconds

A Method to Improve Isolation of MIMO Antenna System for Wireless Portable Devices Using Multiple Pairs of L-Slots (다수 쌍의 L-Slot을 이용하여 무선 휴대 단말기용 MIMO 안테나 시스템의 격리도를 향상시키는 방법)

  • Lee, Hyun-Seok;Yoon, Sang-Won;Park, Hyun-Chang;Park, Hyung-Moo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.820-825
    • /
    • 2008
  • A method to improve isolation characteristics of internal MIMO antenna systems for wireless portable devices operating in the $2.3{\sim}2.4$ GHz band is presented. The proposed system incorporates multiple pairs of L-slots between the two antennas in the ground plane, which operate like a band-stop filter, suppressing mutual coupling between the antennas and resulting in improved isolation. A MIMO antenna system with 6 pairs of L-slots shows reflection loss of -26.4 dB and isolation of -37.5 dB.

A Design Optimization on Coupling Joint between Exhaust Chimney of Electricity Generator and Electromagnetic Pulse (EMP) Shield (EMP 차폐를 위한 비상발전기 연도의 최적 형상 결정)

  • Pang, Seung-Ki;Kim, Jae-Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.159-165
    • /
    • 2015
  • The article presents a parametric study on geometrical design optimization for coupling the joint between a large exhaust air chimney and electromagnetic pulse (EMP) shield for gas turbine electricity generator. We conducted computational fluid dynamics (CFD) simulations on hydraulic diameters of waveguide below cutoff(WBC) ranges 800mm~1025mm, the connection distance ranges 150~450mm, and exhaust gas flow velocities at 15, 20, and 25m/s. The results show that the diameter of main chimney, connection distance, and exhaust gas velocity had impacts on flow stream at the EMP shield. To provide a fully developed stream line at three different flow velocity cases, the WBC diameter and distance of connection should be larger than 1050mm and longer than 300mm, respectively.

A Study on the Vary Small K-band Triple-mode Cavity Resonator Bandpass Filter for Digital Microwave Communication (Digital Microwave 통신을 위한 K-band 초소형 Triple-mode 공동 공진기 대역통과 필터에 관한 연구)

  • 곽민우;안기범;민혁기;이주현;류근관;홍의석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.267-276
    • /
    • 1999
  • A 2 stage 6-pole bandpass filter (BPF) is designed and implemented by using K-band triple-mode cavity. The BPF has an 100MHz bandwidth at the center frequency of 18.5GHz and the response of the filter is Chebyshev function. The cavity filter uses two orthogonal $TE_{113}$ modes and one $TM_{012}$ mode. To obtain a Chebyshev response, the intercavity coupling between the adjacent cavities is accomplished by H-field component of TE modes parallel to slot plate. In this paper, the size and location of intercavity slot are determined by the detailed coupling equation from H-field of TE resonant modes in circular cavity. The measured results agree well with the theoretical one.

  • PDF

Silicon Based Millimeter-Wave Phased Array System (실리콘 기반의 고주파 위상 배열 시스템에 관한 연구)

  • Kang, Dong-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.130-136
    • /
    • 2014
  • This paper reviews the research on silicon based phased array system operating from microwave to millimeter wave frequencies. First, the design of phase shifter using CMOS technology is presented. The passive phase shifter is applied to the transmit/receive module from one to 16 channel in a single chip. The 35 GHz 4-element T/R module consumes less than 200 mW both transmit and receive modes. The architecture can extend to 16-channel operating at 44 GHz, thereby improving transmit power and linearity. The Ku-band 2-antenna 4-element receiver was developed using active phase shifter based on vector sum method. It is important to minimize coupling between beams because the chip contains four independent beams. The method of coupling is presented and verified.

A New Design Approach for Asymmetric Coupled-Section Marchand Balun

  • Park, Ji An;Cho, Choon Sik;Lee, Jae Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.54-60
    • /
    • 2014
  • A systematic design for asymmetric coupled-section Marchand baluns is presented. Asymmetrically coupled transmission lines in multilayer configuration are exploited for constructing Marchand baluns. Design equations for characteristic impedance and electrical length of asymmetrical coupled transmission lines are derived for establishing a systematic design procedure. Novel Marchand balun based on these design equations is composed of two identical asymmetrical coupled transmission lines. However, contrary to the general conventional design approach where ranges for characteristic impedances of coupled lines are ambiguously capitalized, values for characteristic impedance and length are explicitly expressed. Our approach is fundamentally different from the design method using coupling coefficients where solution for coupling coefficient is inherently restricted. To verify the proposed method, one design example is performed for wideband Marchand balun in multilayer configuration, and is fabricated for verifying the design procedure proposed. Maintaining the return loss more than 10 dB, the bandwidth is measured from 0.43 to 1.0 GHz, where $S_{21}$ and $S_{31}$ show better than -4 dB. The measured phase and amplitude imbalances illustrate 0.5 dB and ${\pm}5^{\circ}$, respectively.

EMC Design of Communication System on the Basis of EMC Design Rule (EMC Design Rule을 이용한 통신 System의 EMC Design)

  • 박학병;박종성;이승한;강석환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • We analyzed the mechanism of EM emission in telecommunication system and extracted the dominant parameter in EMC design. The I/O cable, ventilation hole and shield design of chassis are important EMC design Issues in telecommunication systems. Because telecommunication systems have much more I/O cables than other electronic products, EMC design of I/O cable is very important in telecommunication systems. Therefore by the method of experimentation and simulation, EM coupling mechanism of I/O cable was analyzed and the design rule for low emission was extracted. On the base of these EMC design rules, EMC design of telecommunication system was executed without complex redesign or debug. The result obtained by these methods was shown in this paper.

  • PDF

Dual-Band Filter Using Heterogeneous Resonators (이종 공진기를 이용한 이중 대역 통과 필터)

  • Kim, Kyoung-Keun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.253-261
    • /
    • 2010
  • In this paper, the design and the fabrication of dual bandpass filter using heterogeneous resonators is presented. Each resonator would not have an effect on each resonant frequency. Two types of resonators are designed to have different fundamental resonant frequencies, one for the lower passband and the other for the upper passband. In the lower band, half and quarter wavelength resonators were used. In the upper band, a dual-mode resonator was used for adjusting bandwidth. In the upper pass band frequency, resonators of lower passband acts as the input and output. For WLAN, Proposed filters with different second passband frequencies at 2.45/5.2 GHz and 2.45/5.8 GHz are designed and fabricated.

Enhanced adhesion properties of conductive super-hydrophobic surfaces by using zirco-aluminate coupling agent

  • Park, Myung-Hyun;Ha, Ji-Hwan;Song, Hyeonjun;Bae, Joonwon;Park, Sung-Hoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.387-392
    • /
    • 2018
  • Various technical approaches and concepts have been proposed to develop conductive super-hydrophobic (SH) surfaces. However, most of these approaches are not usable in practical applications because of insufficient adhesion and cost issues. Additionally, durability and uniformity issues are still in need of improvement. The goal of this research is to produce a large-area conductive SH surface with improved adhesion performance and uniformity. To this end, carbon nanotubes (CNT) with a high aspect ratio and elastomeric polymer were utilized as a conductive filler and matrix, respectively, to form a coating layer. Additionally, nanoscale silica particles were utilized for stable implementation of the conductive SH surface. To improve the adhesion properties between the SH coating layer and substrate, pretreatment of the substrate was conducted by utilizing both wet and dry etching processes to create specific organic functional groups on the substrate. Following pretreatment of the surface, a zirco-aluminate coupling agent was utilized to enhance adhesion properties between the substrate and the SH coating layer. Raman spectroscopy revealed that adhesion was greatly improved by the formation of a chemical bond between the substrate and the SH coating layer at an optimal coupling agent concentration. The developed conductive SH coating attained a high electromagnetic interference (EMI) shielding effectiveness, which is advantageous in self-cleaning EMI shielding applications.

A study on the Difference Arrow of GDS (Geomagnetic Depth Sounding) Survey using 2-D MT (Magneto-Telluric) Modeling (2차원 MT(Magneto-Telluric)모델링을 이용한 지자기 수직탐사(Geomagnetic Depth Sounding)에서의 차이 지시자의 연구)

  • 양준모;오석훈;이덕기;윤용훈
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.567-573
    • /
    • 2002
  • Two-dimensional MT (Magneto-Telluric) modeling is performed to verify the validity of difference arrow for GDS(Geomagnetic Depth Sounding) survey. The electromagnetic mutual coupling between the sea and in-land conductor is used as a criterion that judges the validity of difference arrow. In this study, the mutual coupling between them is examined according to the spatial distance between them and the period of magnetic variations. The difference arrow is valid for conductors located at surface which are far from the sea or when the long period is used, but the mutual coupling is weak for buried conductor in all the periods. However, when a conductor extends vertically down to the deep part, the validity of difference arrow is in doubt, since the strong mutual coupling influences up to the long period. Therefore, to remove the known conductor effect such as sea effect from the observed induction arrow, the mutual coupling between them must be examined and the caution must be exercised in interpreting the resultant difference arrow if mutual coupling between them is strong.

A Study on Miniaturization and Design Flexibility of an Elliptic-Response Open-Loop Resonator Filter (타원응답 개방 루프 공진기 필터의 소형화 및 설계 유연성에 관한 연구)

  • 안창수;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1082-1089
    • /
    • 2004
  • In this paper, miniaturization of an elliptic-response open-loop resonator filter and design flexibility using similarity transformation of the coupling matrix are proposed. Moreover, the filter with wider fractional bandwidth is designed by the proposed method. In order to verify the proposed method, three 4th-order elliptic-response open-loop resonator filters with a relative bandwidth of 4 % at the center frequency of 2.0 GHz are designed. One is realized with constant-width microstrip line resonator and the others are implemented with different-width microstrip line resonator. Compared with the former one, the latter have shown the size reduction of 13 % and 25 %, respectively. Since it may not be possible to implement the resonators with very narrow spacing for the required coupling coefficient filters with two different configurations representing same response characteristic through similarity transformation of the coupling matrix are proposed. From this design flexibility, a filter with a relative bandwidth of 8 % at the center frequency of 2.0 GHz is designed with realizable design parameters.