• 제목/요약/키워드: Electrolyte salts

Search Result 77, Processing Time 0.024 seconds

Assessing the anion type effect on the hydro-mechanical properties of smectite from macro and micro-structure aspects

  • Goodarzi, Amir R.;Akbari, Hamid R.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.183-200
    • /
    • 2014
  • The expansivity of clayey soils is a complicated phenomenon which may affect the stability of geotechnical structures and geo-environmental projects. In all common factors for the monitoring of soil expansion, less attention is given to anion type of pore space solutions. Therefore, this paper is concerned with the impact of various concentrations of different inorganic salts including NaCl, $Na_2SO_4$, and $Na_2CO_3$ on the macro and microstructure behavior of the expandable smectite clay. Comparison of the responses of the smectite/NaCl and smectite/$Na_2SO_4$ mixtures indicates that the effect of anion valance on the soil engineering properties is not very pronounced, regardless of the electrolyte concentration. However, at presence of carbonate as potential determining ions (PDIs) the swelling power increases up to 1.5 times compared to sulfate or chloride ions. The samples with $Na_2CO_3$ are also more deformable and show lower osmotic compressibility than the other mixtures. This demonstrates that the barrier performance of smectite greatly decreases in case of anions with the non-specific adsorption (e.g., $Cl^-$ and $SO{_4}^{2-}$) as the salinity of solution increases. Based on the results of the X-ray diffraction and sedimentation tests, the high soil volumetric changes upon exposure to carbonate is attributed to an increase in the repulsive forces between smectite basic unit layers due to the PDI effect of $CO{_3}^{2-}$ and increasing the pH level which enhance the buffering capacity of smectite. The study concluded that the nature of anion through its influence on the re-arrangement of soil microstructure and osmotic phenomena governs the hydro-mechanical parameters of expansive clays. It seems not coinciding with the double layer theory of the Gouy-Chapman double layer model.

A Study on the Possibility of Dye Wastewater Treatment of Electrical Photocatalytic System Using TiO2 nanotube plate (TiO2 nanotube plate를 이용한 전기적광촉매시스템의 염료폐수 처리 가능성 연구)

  • Lee, Yongho;Sun, Minghao;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.418-424
    • /
    • 2019
  • In this study, $TiO_2$ nanotubes with different morphologies were prepared in the electrolyte consisting of ethylene glycol, ammonium fluoride($NH_4F$), and deionized water($H_2O$) by controlling the voltage and time in the anodization method. Thicknesses and pore sizes of these $TiO_2$ nanotubes were measured to interpret the relationship between anodization conditions and $TiO_2$ nanotube morphologies. Element contents in the $TiO_2$ nanotubes were detected for further analysis of $TiO_2$ nanotube characteristics. Photoelectrolyticdecolorization efficiencies of the $TiO_2$ nanotube plates with various morphologies were tested to clarify the morphology that a highly active $TiO_2$ nanotube plate should have. Influences of applied voltage in photoelectrolysis processes and sodium sulfate($Na_2SO_4$) concentration in wastewater on the decolorization efficiency were also studied. To save the equipment investment cost in photoelectrolysis methods, a two-photoelectrode system that uses the $TiO_2$ nanotube plates as photoanode and photocathode instead of adding other counter electrodes was studied. Compared with single-photoelectrode system that uses the $TiO_2$ nanotube plate as photoanode and titanium plate as cathode on the view of the treatment of dye wastewater containing different amounts of salt. As a result, a considerably suitable voltage was strictly needed for enhancing the photoelectrolyticdecolorization effect of the two-photoelectrode system but if salts exist in wastewater, an excellent increase in the decolorization efficiency can be obtained.

Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt (리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seong;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery (리튬 이온전지의 안전성을 구현하기 위한 난연성 전해액의 설계)

  • Choi, Nam-Soon;Kim, Sung-Soo;Narukawa, Satoshi;Shin, Soon-Cheol;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.203-218
    • /
    • 2009
  • The development of lithium-ion battery (LIB) technologies and their application in the field of large-scale power sources, such as electric vehicles (EVs), hybrid EVs, and plug-in EVs require enhanced reliability and superior safety. The main components of LIBs should withstand to the inevitable heating of batteries during high current flow. Carbonate solvents that contribute to the dissociation of lithium salts are volatile and potentially combustible and can lead to the thermal runaway of batteries at any abuse conditions. Recently, an interest in nonflammable materials is greatly growing as a means for improving battery safety. In this review paper, novel approaches are described for designing highly safe electrolytes in detail. Non-flammability of liquid electrolytes and battery safety can be achieved by replacing flammable organic solvents with thermally resistive materials such as flame-retardants, fluorinated organic solvents, and ionic liquids.

Corrosion Behavior of $Y_2O_3$ Coating in an Electrolytic Reduction Process (전해환원공정에서 $Y_2O_2$ 코팅층의 부식거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seung;Jeong, Myeong-Soo;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the high molten salt. In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to lithium molten salt at $675^{\circ}C$ for 216 h under an oxidizing atmosphere. The IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an $Y_2O_3$ top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scale by the rapid scale growth and thermal stress. The chemical and thermal stability of the top coat has been found to be beneficial for increasing to the corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Effects of Additives on Soil Washing Efficiency for Mixed Surfactants (혼합 계면활성제에 적용된 각종 첨가제가 토양세척 효율에 미치는 영향)

  • Choi, Sang-Il;Jang, Min;Hwang, Kyung-Yub;Ryoo, Doo-Hyun
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.65-74
    • /
    • 1998
  • To enhance the washing efficiency of soil polluted by hydrophobic organic compounds, the effects of electrolytes and monomeric organic additives on micelle formation and washing efficiency of mixed surfactant solutions were investigated in this study. The surface tensions and critical micelle concentrations(CMCs) of the single and mixed surfactant solutions[$POE_5$/SDS] supplemented by NaCl were measured to investigate the effects on washing efficiency, and the composition ratios of surfactants and NaCl were optimized for the efficient soil washing system. As the mixing ratio of $POE_5$/SDS was increased to 80%, the mixed surfactant with 0.01M NaCl showed more proportional increase of washing efficiency than the mixed surfactant without any salts. The 3% solution of $POE_5$ and SDS(80%/2o%) with 0.01M NaCl showed the washing efficiency of 90%. However, the washing efficiency was not enhanced by NaCl addition to the single surfactant solution of $POE_5$. The CMC of SDS(0.049%) was higher than that of $POE_5$(0.016%), but the CMCs of mixed surfactants were decreased as the mixing ratio of $POE_5$ was increased. Alcohols having longer chain and branched carbon chain were found to be desirable for the soil washing additives.

  • PDF

Removal of Red Tide Organisms -2. Flocculation of Red Tide Organisms by Using Loess- (적조생물의 구제 -2. 황토에 의한 적조생물의 응집제거-)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.455-462
    • /
    • 2000
  • The objective of this study was to examine the physicochemical characteristics of coagulation reaction between loess and red tide organisms (RTO) and its feasibility, in developing a technology for the removal of RTO bloom in coastal sea. The physicochemical characteristics of loess were examined for a particle size distribution, surface characteristics by scanning electron microscope, zeta potential, and alkalinity and pH variations in sea water. Two kinds of RTO that were used in this study, Cylindrothen closterium and Skeietonema costatum, were sampled in Masan bay and were cultured in laboratory. Coagulation experiments were conducted using various concentrations of loess, RTO, and a jar tester. The supernatant and RTO culture solution were analyzed for pH, alkalinity, RTO cell number. A negative zeta potential of loess increased with increasing pH at $10^(-3)M$ NaCl solution and had -71.3 mV at pH 9.36. Loess had a positive zeta potential of +1,8 mV at pH 1.98, which resulted in a characteristic of material having an amphoteric surface charge. In NaCl and $CaCl_2$, solutions, loess had a decreasing negative zeta potential with increasing $Na^+\;and\;Ca^(+2)$ ion concentration and then didn't result in a charge reversal due to not occurring specific adsorption for $Na^+$ ion while resulted in a charge reversal due to occurring specific adsorption for $Ca^(+2)$ ion. In sea water, loess and RTO showed the similar zeta potential values of -112,1 and -9.2 mV, respectively and sea sand powder showed the highest zeta potential value of -25.7 mV in the clays. EDLs (electrical double-layers) of loess and RTO were extremely compressed due to high concentration of salts included in sea water, As a result, there didn't almost exist EDL repulsive force between loess and RTO approaching each other and then LVDW (London-yan der Waals) attractive force was always larger than EDL repulsive force to easily form a floe. Removal rates of RTO exponentially increased with increasing a loess concentration. The removal rates steeply increased until $800 mg/l$ of loess, and reached $100{\%}$ at 6,400 mg/l of loess. Removal rates of RTO exponentially increased with increasing a G-value. This indicated that mixing (i.e., collision among particles) was very important for a coagulation reaction. Loess showed the highest RTO removal rates in the clays.

  • PDF