• Title/Summary/Keyword: Electroless copper

Search Result 132, Processing Time 0.019 seconds

Electroless Copper Plating For Metallization of Electronic Devices

  • Lee Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.75-80
    • /
    • 2004
  • In copper metallization, resistivity of copper seed layer is very important. Conventionally MOCVD has been used for this purpose however electroless copper plating is simple process and the resistivity of copper deposit is less than that of copper prepared by MOCVD. In this study electroless copper plating was conducted on different substrate to find optimum conditions of electroless copper plating for electronic applications. To find optimum conditions, the effects and selectivity of activation method on several substrates were investigated. The effects of copper bath composition on morphology were investigated. The effects of pH and stabilizer on deposition rate were also investigated. The optimum pH of the bath was 12 with addition of stabilizer. The resistivity of copper was decreased with addition of stabilizer and alter heat treatment.

  • PDF

Effect of Microstructure of Substrate on the Metallization Characteristics of the Electroless Copper Deposition for ULSI Interconnection Effect of Plasma

  • 홍석우;이용선;박종완
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.86-86
    • /
    • 2003
  • Copper has attracted much attention in the deep submicron ULSI metallization process as a replacement for aluminum due to its lower resistivity and higher electromigration resistance. Electroless copper deposition method is appealing because it yields conformal, high quality copper at relatively low cost and a low processing temperature. In this work, it was investigated that effect of the microstructure of the substrate on the electroless deposition. The mechanism of the nucleation and growth of the palladium nuclei during palladium activation was proposed. Electroless copper deposition on TiN barriers using glyoxylic acid as a reducing agent was also investigated to replace toxic formaldehyde. Furthermore, electroless copper deposition on TaN$\sub$x/ barriers was examined at various nitrogen flow rate during TaN$\sub$x/ deposition. Finally, it was investigated that the effect of plasma treatment of as-deposited TaN$\sub$x/ harriers on the electroless copper deposition.

  • PDF

Recent Progress in Electroless Plating of Copper

  • Sharma, Ashutosh;Cheon, Chu-Seon;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • In this article, the recent developments in electroless plating of copper, electroless bath formulation and effect of plating parameters have been reviewed. Cyanide free electroless baths are now being developed and studied due to the various environmental concerns. Various organic chemicals such as complexing agents, reducing agents, and additives such as poly-alcohols and aromatic ring compounds have been added to copper plating baths for promising results. The effects of various reducing and complexing agents, bath conditions like additives, bath pH, and composition have been summarized. Finally the applications of the electroless plating of copper and latest developments have been overviewed for further guidance in this field.

Fabrication of Sn-Cu Bump using Electroless Plating Method (무전해 도금법을 이용한 Sn-Cu 범프 형성에 관한 연구)

  • Moon, Yun-Sung;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.17-21
    • /
    • 2008
  • The electroless plating of copper and tin were investigated for the fabrication of Sn-Cu bump. Copper and tin were electroless plated in series on $20{\mu}m$ diameter copper via to form approximately $10{\mu}m$ height bump. In electroless copper plating, acid cleaning and stabilizer addition promoted the selectivity of bath on the copper via. In electroless tin plating, the coating thickness of tin was less uniform relative to that of electroless copper, however the size of Sn-Cu bump were uniform after reflow process.

  • PDF

The Effect of Solution Agitation on the Electroless Cu Deposition Within Nano-patterns (용액 교반이 미세 패턴 내 무전해 구리 도금에 미치는 영향)

  • Lee, Joo-Yul;Kim, Man;Kim, Deok-Jin
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • The effect of solution agitation on the copper electroless deposition process of ULSI (ultra large scale integration) interconnections was investigated by using physical, electrochemical and electrical techniques. It was found that proper solution agitation was effective to obtain superconformal copper configuration within the trenches of $130{\sim}80nm$ width. The transition of open potential during electroless deposition process showed that solution agitation induced compact structure of copper deposits by suppressing mass transfer of cuprous ions toward substrate. Also, the specific resistivity of copper layers was lowered by increasing agitation speed, which made the deposited copper particles smaller. Considering both copper deposit configuration and electric property, around 500 rpm of solution agitation was the most suitable for the homogeneous electroless copper filling within the ultra-fine patterns.

Effects of Surfactant and Preplate Process on Electroless Copper Plating on Carbon Nano-fiber (탄소나노섬유 표면 구리 무전해 도금에 미치는 분산제와 도금 전처리의 영향)

  • Han, Jun-Hyun;Seok, Hyun-Kwang;Lee, Sang-Soo;Jee, Kwang-Koo
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2009
  • This paper deals with the effects of the surfactant and preplate process (sensitization and activation) on electroless copper plating on carbon nano-fiber (CNF). Ultrasonic irradiation was applied both during dispersion of CNF and during electroless plating containing preplate process. The dispersion of CNF and flatness of the plated copper film were discussed based on the changes in surfactant concentration and preplate process time. It was clearly shown that high concentration of surfactant and long time of preplate process could promote the agglomeration of CNF and uneven copper plating on CNF.

Study on Improvement of Thermal Stability of Dendrite-shape Copper Particles by Electroless Silver Plating (Dendrite 형상 구리 입자의 무전해 은 도금에 의한 열적 안정성 향상에 관한 연구)

  • Hwang, In-Seong;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.574-580
    • /
    • 2022
  • While in the process of electroless plating of dendrite-shape copper with silver, various silver-coated copper (Ag@Cu) particles were prepared by using both displacement plating and reducing electroless plating. The physicochemical properties of Ag@Cu particles were analyzed by scanning electron microscope- energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller analysis (BET), and it was confirmed that the silver coated by the reducing electroless plating was formed as nano-particles on the copper surface. Ag@Cu particles were compounded with an epoxy resin to prepare a conductive film, and its thermal stability was evaluated. We investigated the effect of the difference between the displacement plating and reducing electroless plating on the initial resistance and thermal stability of conductive films.

Effects of Acid Treatment of Carbon on Electroless Copper Plating (피도금 탄소재의 산처리가 무전해 동도금에 미치는 영향)

  • Shin, Ari;Han, Jun Hyun
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.265-273
    • /
    • 2016
  • The effects of surface modification by nitric acid on the pre-treatment of electroless copper plating were investigated. Copper was electroless-plated on the nitric acid treated graphite activated by a two-step pre-treatment process (sensitization + activation). The chemical state and relative quantities of the various surface species were determined by X-ray photoelectron spectroscopy (XPS) after nitric acid modification or pre-treatment. The acid treatment increased the surface roughness of the graphite due to deep and fine pores and introduced the oxygen-containing functional groups (-COOH and O-C=O) on the surface of graphite. In the pre-treatment step, the high roughness and many functional groups on the nitric acid treated graphite promoted the adsorption of Sn and Pd ions, leading to the uniform adsorption of catalyst ($Pd^0$) for Cu deposition. In the early stage of electroless plating, a lot of tiny copper particles were formed on the whole surface of acid treated graphite and then homogeneous copper film with low variation in thickness was formed after 30 min.

Electroless Copper Plating on 304L Stainless Steel Powders and Corrosion Resistance of the Sintered Compacts of Composite Powders (304L 스테인리스강 분말의 내식성 개선을 위한 무전해 구리 도금과 분말 소결체의 내식성 조사 연구)

  • Ahn, Jae-Woo;Lee, Jae-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2009
  • A study has been made about the effects of powder content, reaction temperature, reaction time, and stirring speed on the preparation of the stainless steel(STS) 304L powders plating with copper by an electroless plating method. The behavior of corrosion resistance of the sintered STS-Cu composite powders was also investigated by the salt spraying test The electroless plating technique was an effective method to manufactur the copper-uniform plating composite powders, the corrosion resistance of this sintered specimen was improved bysuppressing Cr precipitates on grain boundaries in the sintered compacts of composite powders.

Study on the Formation Mechanism of Electroless Plating Seeds on Polymer by Laser (레이저에 의한 폴리머상의 무전해 도금 시드 형성 메커니즘 연구)

  • Paik, Byoung-Man;Lee, Jae Hoon;Shin, Dong-Sig;Lee, Kun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • The LDS(Laser Direct Structuring) is one of the new direct writing methods to fabricate conductive patterns by energy beam. It uses thermoplastic polymers with an additive compound that serves as plating seed after the activation by laser. The advantages of LDS include the miniaturization of electrical components, design flexibility, and a reduced number of production steps. The purpose of this study is to investigate the fundamental mechanism for LDS and the characteristics of conductive patterns by laser parameters. These results were studied by SEM, EDX, and XPS analysis. We have used a 20W pulse-modulated fiber laser and copper electroless plating to fabricate conductive patterns on polymer. The result showed that electroless copper plating seed caused the laser cracking of additive compound. In particular, the additive compound contained in copper metal oxides atoms will be changed to copper metal elements. Also, the characteristics of conductive patterns were dependent on laser parameter, especially laser fluence.