• Title/Summary/Keyword: Electrochemical technique

Search Result 407, Processing Time 0.03 seconds

Micro Groove Machining for Electrochemical Micro-Machining (전기화학 가공을 이용한 마이크로 홈 가공)

  • 김영민;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1844-1847
    • /
    • 2003
  • Electrochemical micro-machining(EMM) is used to achieve a desired workpiece surface by dissolving the metal workpiece with an electrochemical reaction. This machining method can be applied to metal that is difficult to machining using other methods. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and current is applied. This aim of this work is to develop electrochemical micro-machining(EMM) technique for micro groove shape by establishing appropriate electrochemical parameters of machining

  • PDF

Pulsed Electrochemical Deposition for 3D Micro Structuring

  • Park, Jung-Woo;Ryu, Shi-Hyoung;Chu, Chong-Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • In this paper, micro structuring technique using localized electrochemical deposition (LECD) with ultra short pulses was investigated. Electric field in electrochemical cell was localized near the tool tip end region by applying pulses of a few hundreds of nano second duration, Pt-Ir tip was used as a counter electrode and copper was deposited on the copper substrate in mixed electrolyte of 0.5 M $CuSO_4$ and 0.5 M $H_2SO_4$, The effectiveness of this technique was verified by comparison with ECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration were investigated. The proper condition was selected based on the results of the various experiments. Micro columns less than $10{\mu}m$ in diameter were fabricated using this technique. The real 3D micro structures such as micro spring and micro pattern were made by the presented method.

Principles and Applications of Galvanostatic Intermittent Titration Technique for Lithium-ion Batteries

  • Kim, Jaeyoung;Park, Sangbin;Hwang, Sunhyun;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.19-31
    • /
    • 2022
  • Lithium-ion battery development is one of the most active contemporary research areas, gaining more attention in recent times, following the increasing importance of energy storage technology. The galvanostatic intermittent titration technique (GITT) has become a crucial method among various electrochemical analyses for battery research. During one titration step in GITT, which consists of a constant current pulse followed by a relaxation period, transient and steady-state voltage changes were measured. It draws both thermodynamic and kinetic parameters. The diffusion coefficients of the lithium ion, open-circuit voltages, and overpotentials at various states of charge can be deduced by a series of titration steps. This mini-review details the theoretical and practical aspects of GITT analysis, from the measurement method to the derivation of the diffusivity equation for research cases according to the specific experimental purpose. This will shed light on a better understanding of electrochemical reactions and provide insight into the methods for improving lithium-ion battery performance.

토질조건에 따른 납 오염토양의 Electrokinetic 정화 효율

  • 김병일;조용실;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.34-37
    • /
    • 2002
  • In this study, electrochemical characteristics variation and removal efficiency with initial pH and mineral compositions during electrokinetic remediation of lead contaminated soils were investigated. Test results showed that heavy metal transportation affected by soil characteristics and electrochemical characteristics varied during electrokinetic remediation. Therefore, in the application of enhanced electrokinetic remediation technique to increase removal efficiency, discrete selection of enhanced technique with characteristics of targeted soil were needed.

  • PDF

Optical Interferometry as Electrochemical Emission Spectroscopy of Metallic alloys in Aqueous Solutions

  • Habib, K.;AI-Mazeedi, H.
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.277-282
    • /
    • 2003
  • Holographic interferometry, an electromagnetic method, was used to study corrosion of carbon steel, aluminum and copper nickel alloys in NaOH, KCI and $H_2SO_4$ solutions respectively. The technique, called electrochemical emission spectroscopy, consisted of in-situ monitoring of changes in the number of fringe evolutions during the corrosion process. It allowed a detailed picture of anodic dissolution rate changes of alloys. The results were compared to common corrosion measurement methods such as linear polarization resistance measurements and electrochemical impedance spectroscopy. A good agreement between both data was found, thus indicating that holographic interferometry can be a very powerful technique for in-situ corrosion monitoring.

Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications

  • Padha, Bhavya;Verma, Sonali;Mahajan, Prerna;Arya, Sandeep
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.167-176
    • /
    • 2022
  • Electrochemical impedance spectroscopy (EIS) is a unique non-destructive technique employed to analyze various devices in different energy storage applications. It characterizes materials and interfaces for their properties in heterogeneous systems employing equivalent circuits as models. So far, it has been used to analyze the performance of various photovoltaic cells, fuel cells, batteries, and other energy storage devices, through equivalent circuit designing. This review highlights the diverse applications of EIS in fuel cells and specific parameters affecting its performance. A particular emphasis has been laid on the challenges faced by this technique and their possible solutions.

Applications of Scanning Electrochemical Microscopy (SECM) Coupled to Atomic Force Microscopy with Sub-Micrometer Spatial Resolution to the Development and Discovery of Electrocatalysts

  • Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.316-326
    • /
    • 2016
  • Development and discovery of efficient, cost-effective, and robust electrocatalysts are imperative for practical and widespread implementation of water electrolysis and fuel cell techniques in the anticipated hydrogen economy. The electrochemical reactions involved in water electrolysis, i.e., hydrogen and oxygen evolution reactions, are complex inner-sphere reactions with slow multi-electron transfer kinetics. To develop active electrocatalysts for water electrolysis, the physicochemical properties of the electrode surfaces in electrolyte solutions should be investigated and understood in detail. When electrocatalysis is conducted using nanoparticles with large surface areas and active surface states, analytical techniques with sub-nanometer resolution are required, along with material development. Scanning electrochemical microscopy (SECM) is an electrochemical technique for studying the surface reactions and properties of various types of electrodes using a very small tip electrode. Recently, the morphological and chemical characteristics of single nanoparticles and bio-enzymes for catalytic reactions were studied with nanometer resolution by combining SECM with atomic force microscopy (AFM). Herein, SECM techniques are briefly reviewed, including the AFM-SECM technique, to facilitate further development and discovery of highly active, cost-effective, and robust electrode materials for efficient electrolysis and photolysis.

A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.154-158
    • /
    • 2012
  • It is generally known that electrochemical impedance spectroscopy is a powerful technique and its real-time application has been demanded for prompt observations on instantaneous electrochemical changes. Nevertheless, long measurement time and laborious analysis procedures have hindered development of it. Solving the problems, here I report of a new algorithm design for development of a real-time electrochemical impedance monitoring system, which potentially provides a guideline in developing monitoring systems of electric vehicles batteries and other electrochemical power plants. The significant progress in this report is employment of the parallel processing protocol which connects independent sub functions to successfully operate with avoiding mutual interruptions. Therefore, all the processes required to monitor electrochemical impedance changes in realtime are properly operated. To realize the conceptual scheme, a Labview program was coded with sub functions units which conduct their processes individually and only data are transferred between them through the parallel pipelines. Finally, measured impedance spectra and analysis results are displayed, which are synchronized according to the time of change.

New Analysis of Electrochemical Impedance Spectroscopy for Lithium-ion Batteries

  • Osaka, Tetsuya;Nara, Hiroki;Mukoyama, Daikichi;Yokoshima, Tokihiko
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.157-162
    • /
    • 2013
  • First of all, we express our deepest sympathies for the passing of Professor Su-Moon Park. In the present paper, an electrochemical impedance spectroscopy (EIS), which Professor Su-Moon Park also used frequently for the investigation of electroconducting polymer, is introduced as a recent evaluation tool for a commercially available lithium-ion battery (LIB). The paper surveys how to design equivalent circuits while explaining physical and chemical phenomena in the LIB and how to get more accurate impedance spectra with varying the measuring temperatures. Additionally, a square current EIS (SC-EIS) technique, which we have suggested, is introduced for the larger LIB system as a promising technique for the future.

A Microfluidic Electrochemical Sensor for Detecting the Very Low Concentration Endocrine Disruptor with Self Assembled Monolayer and Preconcentration Technique (자기조립단층과 농축 기술을 이용한 저농도 내분비계 장애물질 검출용 미소유체채널 기반 전기화학 센서)

  • Kim, Suyun;Han, Ji-Hoon;Pak, James Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.628-634
    • /
    • 2016
  • This paper demonstrates a microfluidic electrochemical sensor for detecting endocrine disruptor such as estradiol at a very low concentration by using preconcentration technique. In addition, self-assembled monolayer(SAM) was also employed on the working electrode of the electrochemical sensor in order to increase the estradiol capture efficiency of the sensor. SAM treatment on the working electrode enhanced the specific binding between the surface of the working electrode and the estradiol antibody. The estradiol antibody was applied on the working electrode at different concentrations(10, 20, 50, 100, 200 pg/ml) for observing the concentration dependency. The measured electrochemical redox current changed with the amount of the bound estradiol on the Au working electrode surface and the sensor can detect all the target material when the immobilized antibody amount is more than the estradiol amount in the water. The elecrochemical estradiol sensor without SAM treatment showed a low current of 7.79 nA, while the sensor treated with SAM resulted in 339 nA at 200 pg/ml, which is more than 40 fold higher output current. When combining the preconcentration technique and the SAM-treated electrode, the measured current became more than 100 fold higher than that of the sensor without neither SAM treatment nor preconcentration technique. The combination of these two techniques can would enable the proposed microfluidic electrochemical sensor to detect a very low concentration endocrine disruptor.