• Title/Summary/Keyword: Electrochemical supercapacitors

Search Result 122, Processing Time 0.026 seconds

Au-Ag Core Shell Nanowire Network for Highly Stretchable and Transparent Supercapacitor Applications (금-은 코어쉘 나노 와이어 제조 및 투명, 유연 슈퍼캐패시터 전극으로의 활용에 관한 연구)

  • Lee, Ha-Beom;Gwon, Jin-Hyeong;Jo, Hyeon-Min;Eom, Hyeon-Jin;Go, Seung-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.183.1-183.1
    • /
    • 2016
  • Due to the latest research trend toward wearable energy devices, transparent and stretchable supercapacitors which can sustain their performance even under physical deformation have steadily attracted huge attention. Despite the Ag NW is the most promising candidate for fabrication of transparent and stretchable electronics, the electrochemical instability interrupts its application to development of the energy device. Here, we introduce a transparent and highly stretchable supercapacitor made by Au-Ag core shell NW network percolation electrode. The Au-Ag core shell NW synthesized by a simple solution process not only shows excellent electrical conductivity but also greatly enhanced chemical and electrochemical stability compare to pristine Ag NW. These outstanding properties of the Au-Ag core shell NW are attributed both to the core Ag NW and the Au protecting sheath layer. The proposed Au-Ag core shell NW based supercapacitor exhibits optical transmittance with outstanding mechanical stability withstanding 60% strain without any decrease of the performance. The supercapacitors connected in series are charged and discharged stable in 30% strain turning on a red LED. These notable results demonstrate the potential of the Au-Ag core shell NW as a strong candidate for development of wearable energy devices.

  • PDF

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes (독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터)

  • Kim, Dong Won;Jung, Hyunyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

Recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides electrodes for electrochemical supercapacitors - A brief review

  • Theerthagiri, Jayaraman;Durai, Govindarajan;Karuppasamy, K.;Arunachalam, Prabhakarn;Elakkiya, Venugopal;Kuppusami, Parasuraman;Maiyalagan, Thandavarayan;Kim, Hyun-Seok
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.12-27
    • /
    • 2018
  • Supercapacitors (SCs) has gained an impressive concentration by the researchers due to its advantages such as high energy and power densities, long cyclic life, rapid charge-discharge rates, low maintenance and desirable safety. Hence it has been widely utilized in energy storage and conversion devices. Among the different components of SC, electrodes play a vital role in the performances of SCs. In this review, we present the recent advances in 2-D nanostructured metal nitrides, carbides, and phosphides based materials for SC electrodes. Finally, the electrochemical stability and designing approach for the future advancement of the electrode materials are also highlighted.

Surface Functionalization of Carbon Fiber for High-Performance Fibrous Supercapacitor (고성능 섬유형 슈퍼커패시터를 위한 탄소섬유의 표면 기능화)

  • Lee, Young-Geun;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2022
  • Fibrous supercapacitors (FSs), owing to their high power density, good safety characteristic, and high flexibility, have recently been in the spotlight as energy storage devices for wearable electronics. However, despite these advantages, FCs face many challenges related to their active material of carbon fiber (CF). CF has low surface area and poor wettability between electrode and electrolyte, which result in low capacitance and poor long-term stability at high current densities. To overcome these limits, fibrous supercapacitors made using surface-activated CF (FS-SACF) are here suggested; these materials have improved specific surface area and better wettability, obtained by introducing porous structure and oxygen-containing functional groups on the CF surface, respectively, through surface engineering. The FS-SACF shows an improved ion diffusion coefficient and better electrochemical performance, including high specific capacity of 223.6 mF cm-2 at current density of 10 ㎂ cm-2, high-rate performance of 171.2 mF cm-2 at current density of 50.0 ㎂ cm-2, and remarkable, ultrafast cycling stability (96.2 % after 1,000 cycles at current density of 250.0 ㎂ cm-2). The excellent electrochemical performance is definitely due to the effects of surface functionalization on CF, leading to improved specific surface area and superior ion diffusion capability.

Optimizing the Performance of Three-Dimensional Nitrogen-Doped Graphene Supercapacitors by Regulating the Nitrogen Doping Concentration

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • Nitrogen-doped graphene was synthesized by a hydrothermal method using graphene oxide (GO) as the raw material, urea as the reducing agent and nitrogen as the dopant. The morphology, structure, composition and electrochemical properties of the samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, electrical conductivity and electrochemical tests. The results show that urea can effectively reduce GO and achieve nitrogen doping under the hydrothermal conditions. By adjusting the mass ratio of raw materials to dopants, the graphene with different nitrogen doping contents can be obtained; the nitrogen content range is from 5.28~6.08% (atomic fraction percentage).When the ratio of dopant to urea is 1:30, the nitrogen doping content reaches a maximum of 6.08%.The supercapacitor performance test shows that the nitrogen content prepared by the ratio of 6.08% is the best at 0.1 A·g-1. The specific capacitance is 95.2 F·g-1.

Enhancement of Electrolyte Properties for High Energy Density Supercapacitors by using Additive Materials

  • Kim, Cheong;Habazaki, Hiroki;Park, Soo Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.214-217
    • /
    • 2016
  • In this study, we studied the enhancement of the energy densities of electrochemical capacitors by improving the working voltage range of the electrolyte. To prevent the decomposition of the electrolyte, stable SEI layers were formed by reductive degradation of additive materials such as fluoro-ethylene carbonate (FEC) and vinyl ethylene carbonate (VEC) before degradation of the base electrolyte. As a result, the solution resistance (Rs) of EC:DMC + SL 20 % + VEC 1 % electrolytes observed 1.47 Ω and the charge transfer resistance (Rct) was 2.64 Ω at the open circuit voltage. Additionally, a cycle retention of 94 % was observed for EC:DMC + SL 20 % + VEC 1 % after 500 cycles at 3.5 V.

Effects of Cyclic Structure of Ammonium Ions on Capacitance in Electrochemical Double Layer Supercapacitors

  • Hong, Jeehoon;Hwang, Byunghyun;Lee, Junghye;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The conductivity of the electrolyte used plays a critical role in the optimization of the performance of electrochemical double layer capacitors. However, when the difference in the conductivities of different electrolytes is not significant (only 10-20%), the conductivity has little effect on the capacitance. On the other, unlike the conductivity and viscosity of the electrolyte, the cation size directly influences the capacitance. Cyclic ions have a smaller effective radius than that of the corresponding acyclic ions because the acyclic alkyl groups have a greater number of conformational degrees of freedom, such as the rotational, bending, and stretching modes. Consequently, because of the smaller effective size of the cyclic ions, cells containing electrolytes with such ions exhibit higher capacitances than do those with their acyclic counterparts.

Influence of Urea Precursor on the Electrochemical Properties of Ni-Co-based Metal Organic Framework Electrodes for Supercapacitors

  • Jung, Ye Seul;Jung, Yongju;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.523-531
    • /
    • 2022
  • A NiCo-metal organic framework (MOF) electrode, prepared using urea as a surfactant, was synthesized using a one-pot hydrothermal method. The addition of urea to the NiCo-MOF creates interstitial voids and an ultra-thin nanostructure in the NiCo-MOF, which improves its charge transfer performance. We obtained the optimal metal to surfactant ratio to achieve the best specific capacitance. The NiCo-MOF was employed as the working electrode material in a three-electrode system. Field emission scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy were employed to characterize the microstructures and morphologies of the composites. Cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy curves were employed to quantify the electrochemical properties of the electrodes in a 6 M KOH electrolyte.

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors

  • Gopiraman, Mayakrishnan;Saravanamoorthy, Somasundaram;Kim, Seung-Hyun;Chung, Ill-Min
    • Carbon letters
    • /
    • v.24
    • /
    • pp.73-81
    • /
    • 2017
  • Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).

Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications

  • Srikesh, G.;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • Transition metal oxide nanocrystalline materials are playing major role in energy storage application in this scenario. Nickel oxide is one of the best antiferromagnetic materials which is used as electrodes in energy storage devices such as, fuel cells, batteries, electrochemical capacitors, etc. In this research work, nickel oxide nanoparticles were synthesized by combustion route in presence of organic fuels such as, glycine, glucose and and urea. The prepared nickel oxide nanoparticles were calcined at 600℃ for 3 h to get phase pure materials. The calcined nanoparticles were preliminarily characterized by XRD, particle size analysis, SEM and EDAX. To prepare nickel oxide electrode materials for application in supercapacitors, the calcined NiO nanoparticles were mixed with di-methyl-acetamide and few drops of nafion solution for 12 to 16 h. The above slurry was coated in the graphite sheet and dried at 50℃ for 2 to 4 h in a hot air oven to remove organic solvent. The dried sample was subjected to electrochemical studies, such as cyclic voltammetry, AC impedance analysis and chrono-coulometry studies in KOH electrolyte medium. From the above studies, it was found that nickel oxide nanoparticles prepared by combustion synthesis using glucose as a fuel exhibited resulted in low particle diameter (42.23 nm). All the nickel oxide electrodes have shown better good capacitance values suitable for electrochemical capacitor applications.