DOI QR코드

DOI QR Code

Effects of Cyclic Structure of Ammonium Ions on Capacitance in Electrochemical Double Layer Supercapacitors

  • Received : 2016.10.17
  • Accepted : 2016.12.12
  • Published : 2017.03.31

Abstract

The conductivity of the electrolyte used plays a critical role in the optimization of the performance of electrochemical double layer capacitors. However, when the difference in the conductivities of different electrolytes is not significant (only 10-20%), the conductivity has little effect on the capacitance. On the other, unlike the conductivity and viscosity of the electrolyte, the cation size directly influences the capacitance. Cyclic ions have a smaller effective radius than that of the corresponding acyclic ions because the acyclic alkyl groups have a greater number of conformational degrees of freedom, such as the rotational, bending, and stretching modes. Consequently, because of the smaller effective size of the cyclic ions, cells containing electrolytes with such ions exhibit higher capacitances than do those with their acyclic counterparts.

Keywords

References

  1. J.H. Park, S.Y. Lee, J.H. Kim, S. Ahn, J. Electrochem. Sci. Technol., 2012, 3(3), 143-148. https://doi.org/10.5229/JECST.2012.3.3.143
  2. S. Paul, J.-H. Kim, D.-W. Kim, J. Electrochem. Sci. Technol., 2011, 2(2), 91-96. https://doi.org/10.5229/JECST.2011.2.2.091
  3. Y. Lai, X. Chen, Z. Zhang, J. Li, Y. Liu, Electrochim. Acta, 2011, 56(18), 6426-6430. https://doi.org/10.1016/j.electacta.2011.04.136
  4. T. Devarajan, S. Higashiya, C. Dangler, M. Rane-Fondacaro, J. Snyder, P. Haldar, Electrochem. Commun., 2009, 11(3), 680-683. https://doi.org/10.1016/j.elecom.2009.01.013
  5. K. Chiba, T. Ueda, H. Yamamoto, Electrochemistry, 2007, 75(8), 664-667. https://doi.org/10.5796/electrochemistry.75.664
  6. Z. Shi, X. Yu, J. Wang, H. Hu, C. Wu, Electrochim. Acta, 2015, 174, 215-220. https://doi.org/10.1016/j.electacta.2015.05.133
  7. E. Perricone, M. Chamas, J.C. Lepretre, P. Judeinstein, P. Azais, E. Raymundo-Pinero, F. Beguin, F. Alloin, J. Power Sources, 2013, 239, 217-224. https://doi.org/10.1016/j.jpowsour.2013.03.123
  8. E. Perricone, M. Chamas, L. Cointeaux, J.C. Lepretre, P. Judeinstein, P. Azais, F. Beguin, F. Alloin, Electrochim. Acta, 2013, 93, 1-7. https://doi.org/10.1016/j.electacta.2013.01.084
  9. J. Segalini, E. Iwama, P.-L. Taberna, Y. Gogotsi, P. Simon, Electrochem. Commun., 2012, 15(1), 63-65. https://doi.org/10.1016/j.elecom.2011.11.023
  10. H. Wang, L. Pilon, J. Power Sources, 2013, 221, 252-260. https://doi.org/10.1016/j.jpowsour.2012.08.002
  11. L. Wei, M. Sevilla, A.B. Fuertes, R. Mokaya, G. Yushin, Adv. Funct. Mater., 2012, 22(4), 827-834. https://doi.org/10.1002/adfm.201101866
  12. T. Han, M.-S. Park, J. Kim, J.H. Kim, K. Kim, Chem. Sci., 2016, 7, 1791-1796. https://doi.org/10.1039/C5SC02755A
  13. A.R. Koh, B. Hwang, K. Chul Roh, K. Kim, Phys. Chem. Chem. Phys., 2014, 16(29), 15146-15151. https://doi.org/10.1039/c4cp00949e
  14. K. Chiba, T. Ueda, H. Yamamoto, Electrochemistry, 2007, 75(8), 664-667. https://doi.org/10.5796/electrochemistry.75.664

Cited by

  1. Competition between ionic adsorption and desorption on electrochemical double layer capacitor electrodes in acetonitrile solutions at different currents and temperatures vol.372, 2017, https://doi.org/10.1016/j.jpowsour.2017.10.047