• Title/Summary/Keyword: Electrochemical machining

Search Result 123, Processing Time 0.026 seconds

3D Printed Flexible Cathode Based on Cu-EDTA that Prepared by Molecular Precursor Method and Microwave Processing for Electrochemical Machining

  • Yan, Binggong;Song, Xuan;Tian, Zhao;Huang, Xiaodi;Jiang, Kaiyong
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.180-186
    • /
    • 2020
  • In this work, a metal-ligand solution (Cu-EDTA) was prepared based on the molecular precursor method and the solution was spin-coated onto 3D printed flexible photosensitive resin sheets. After being processed by microwave, a laser with a wavelength of 355 nm was utilized to scan the spin-coated sheets and then the sheets were immersed in an electroless copper plating solution to deposit copper wires. With the help of microwave processing, the adhesion between copper wires and substrate was improved which should result from the increase of roughness, decrease of contact angle and the consistent orientation of coated film according to the results of 3D profilometer and SEM. XPS results showed that copper seeds formed after laser scanning. Using the 3D printed flexible sheets as cathode and galvanized iron as anode, electrochemical machining was conducted.

Vibration Electrochemical Polishing for Localized Surface Leveling (미세표면 평활화를 위한 진동 전기화학 폴리싱)

  • Kim, Uksu;Kim, Youngbin;Park, Jeongwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • This study demonstrates a novel hybrid surface polishing process combining non-traditional electrochemical polishing(ECP) with external artificial ultrasonic vibration. ECP, typical noncontact surface polishing process, has been used to improve surface quality without leaving any mechanical scratch marks formed by previous mechanical processes, which can polish work material by electrochemical dissolution between two electrodes surfaces. This research suggests vibration electrochemical polishing(VECP) assisted by ultrasonic vibration for enhancing electrochemical reaction and surface quality compared to the conventional ECP. The localized roughness of work material is measured by atomic force microscopy(AFM) for detailed information on surface. Besides roughness, overall surface quality, material removal rate(MRR), and productivity etc. are compared with conventional ECP.

A Study on Preventing Cracks at the Small Hole Exit in Ultrasonic Machining Using a Wax Coating (초음파 미세구멍 관통가공에서 왁스 코팅을 이용한 출구크랙 방지에 관한 연구)

  • Li, Hang;Ko, Tae Jo;Baek, Dae Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • Ultrasonic machining (USM) does not involve heating or any electrochemical effects, and subsequently causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials, such as glass or ceramics. However, USM for brittle materials generates cracks on the workpiece while machining, especially at the hole exit with a small diameter. In this study, wax coating was used to deposit wax on the back side of the workpiece to decrease the occurrence of cracks at the exit holes in USM, and it was finally removed with a cleaning process. The experimental results show that this technique is beneficial for restricting the occurrence of cracks in glass or ceramics.

Microdrilling of Glass Substrates by Electrochemical Discharge Machining in NaOH Solution (NaOH 수용액을 이용한 전기화학적 방전가공법에 의한 유리기판의 미세가공)

  • 홍석우;정귀상;최영규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.427-430
    • /
    • 1998
  • Electro Discharge Machining (EDM) is a so-call non-conventional machining technique. This paper presents the experimental results of an EDM technique for the fabrication of microholes on #7440 pyrex glass substrates. With various applied voltages and at various concentration of NaOH solution, the glass substrates have been microdrilled using the copper electrodes of which diameters are 250 $\mu\textrm{m}$ to 450 $\mu\textrm{m}$. The machined throughholes have been observed the top diameter, the bottom diameter and machining time have been measured. The experimental results show that the machining time decreases as the concentration of NaOH solution increases, the applied voltage increases and the needle diameter decreases. Also, the top diameter increases as the needle diameter increases or the applied voltage increases. The bottom diameter decreases as the needle diameter decreases or the applied voltage decreases.

  • PDF

Microdrilling of Glass Substrates by Electrochemical Discharge Machining (전기화학적 방전법에 의한 유리기판의 미세가공)

  • 홍석우;최영규;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.393-396
    • /
    • 1997
  • Electro Discharge Machining (EDM) is a so-call non-conventional machining technique. This paper presents the experimental results of an EDM technique for the fabircation of microholes on #7440 pyrex glans. With various applied voltages and at various concentration of KOH solution, the glass substrate have been microdrilled using the copper electrodes of which diameters are 250$\mu\textrm{m}$ to 450$\mu\textrm{m}$, respectively. The machined throughholes have been observed the top diameter, the bottom diameter, hollow width and hole diameter of the hole, and machining time hale been measured. The experimental results show that the machining time decreases as the concentration of KOH solution increases or the applied voltage increase. Also, The top diameter increases as the concentration of KOH solution decreases or the allied voltage increases. The bottom and hollow width decreases as the of KOH solution increases or the applied voltage decreases.

  • PDF

Vibration Electrochemical Polishing (VECP) for Improved Surface Defects of Stainless Steel (스테인리스강의 표면 결점 개선을 위한 진동 전기화학 폴리싱)

  • Kim, Uk Su;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.795-799
    • /
    • 2013
  • This paper describes a novel hybrid surface polishing process combining non-traditional electrochemical polishing (ECP) with external artificial ultrasonic vibration. The purpose of this study is to develop an easier method for improving stainless steel surfaces. To this end, vibration electrochemical polishing (VECP), a novel ultrasonic manufacturing process, for enhancing electrochemical reaction and surface quality compared with that achieved using conventional ECP is suggested. In addition, for finding the optimized experimental conditions, the two methods are compared under various current densities. Localized roughness of the work material is measured with atomic force microscopy (AFM) and scanning electron microscopy (SEM) for obtaining detailed surface information.

A study on the characteristics of electrochemical deburring in the governor shaft cross hole (거버너샤프트 교차구멍 내경의 전해디버링 특성에 관한 연구)

  • Choi, In-Hyu;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.1984-1991
    • /
    • 1997
  • Recently burr technology is rising in the fields of the precision manufacturing and the high quality machining, deburring has treated as a difficult problem on going to the high efficiency, automation in the FMS. Removal of burr with various shapes, dimensions and properties couldn't be standardized and has depended on manual treatment. Especially, deburring for cross hole inside owing to passing through out perpendicular to a main hole is more difficult, the electrochemical method is proper as its solution at practical aspects. Burr elimination in the cross hole drilling of governor shaft used in the automobile engine so far has been worked by a manual post-processing by a skillful worker, which becomes a factor of productivity-down and cost-up so that improvement of machining process is needed. Therefore, for the high efficiency and automation of internal deburring in the cross hole, development of electrochemical deburring technology is needed. So, the new process in the burr treatment is supposed. In this study, characteristics of electrochemical deburring through experiments were identified and factors such as electrolytic gap and electorlytic fluid contributed to removal burr height were analyzed. Also, deburring efficiency and electrolytic performance for cross hole were examined according to electrolytic current and electrochemical deburring condition corresponding to acquired edge quality was found out.

A Study on The Prediction of Workpiece Shape of The Electrochemical Machining by Boundary Element Method (경계요소법에 의한 전해가공물의 형상예측에 관한 연구)

  • 강대철;양재봉;김헌영;전병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.443-447
    • /
    • 2003
  • The BEM (Boundary Element Method) is a computational technique for the approximate solution of problems in continuum mechanics. In the BEM both volume and surface integrals transformed into boundary integral equations. So, we applied the ECM (Electrochemical Machining) process to boundary problem, because our focus is only deformed shape. The ECM process is modeled as a two-dimensional problem assuming constant properties of electrolyte, and an incremental formulation is used with automatic mesh regeneration. As a result the final shape is roughly agreed with experimental shape. But, it has an error of exact shape, because a chemically factor is not considered

  • PDF

Fabrication of Copper Electrode Array and Test of Electrochemical Discharge Machining for Glass Drilling (유리의 미세 구멍 가공을 위한 구리 전극군 제작 및 전기 화학 방전 가공 시험)

  • Jung, Ju-Myoung;Sim, Woo-Young;Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.297-299
    • /
    • 2003
  • In this paper, we present the fabrication of copper electrode array and test of electrochemical discharge machining for the fabrication of microholes on Borofloat33 glass. Copper electrode array is fabricated by the bonding of silicon upper substrate and lower substrate and copper electroplate. The silicon upper electrode having microholes fabricated by ICP-RIE is the mold of copper electroplate. The lower substrate is used as the seed layer for copper electroplate after Au - Au thermocompression bonding with the upper substrate.

  • PDF

A Study on the Mechanism of Micro-ECM by Use of Point Electrode Method (점 전극을 이용한 마이크로 전해가공 기구에 관한 연구)

  • Kim, Bong-Gyu;Jeon, Jong-Up;Park, Kyu-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.77-83
    • /
    • 2002
  • This research aimed at from the establishment of theory on micro electrochemical machining mechanism to the implementation of a practical fabrication system of micro parts. In detail, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result, the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.