• Title/Summary/Keyword: Electrochemical damage

Search Result 118, Processing Time 0.024 seconds

Investigation of the Electrochemical Characteristics of Electropolished Super Austenite Stainless Steel with Seawater Temperature (전해연마한 슈퍼오스테나이트 스테인리스강의 해수온도에 따른 전기화학적 특성 연구)

  • Hyun-Kyu Hwang;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.164-174
    • /
    • 2023
  • Electropolishing technology uses an electrochemical reaction and improves surface roughness, glossiness, and corrosion resistance. In this investigation, electropolishing was performed to improve the corrosion resistance of super austenitic stainless steel. As a result of electropolishing, surface roughness (0.16 ㎛) was improved by about 76.5% compared to mechanical polishing (0.68 ㎛). In addition, the electropolished surface was smooth because the average and variance values of the depth histogram were small. Tafel analysis was performed after a potentiodynamic polarization experiment with seawater temperature, and the microstructure was compared and analyzed. The corrosion current density at 30 ℃, 60 ℃, and 90 ℃ was reduced by 0.083 ㎂/cm2, 0.296 ㎂/cm2, and 0.341 ㎂/cm2, respectively. Pitting occurred in the mechanical polished specimen at 30 ℃, but partial intergranular corrosion was observed in the electropolished specimen, and pitting occurred predominantly at both 60 ℃ and 90 ℃. In addition, the damage depths of the electropolished specimen were shallower than those of mechanical polishing at 30 ℃ and 60 ℃, but the opposite result was seen at 90 ℃.

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size (알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성)

  • Park, Sun Min;Yu, Ho Jun;Kim, Kwang Hyun;Kang, Yun Chan;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.

A Study on Hydrogen Damage in Base Metal of API X70 (API X70강 배관 모재부의 수소 손상에 관한 연구)

  • LEE, HO JUN;YU, JONG MIN;DAO, VAN HUNG;BAE, JAE HYEON;KIM, WOO SIK;YOON, KEE BONG
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.3
    • /
    • pp.284-292
    • /
    • 2020
  • In this study, hydrogen charging was conducted for API X70 steel by the electro-chemical hydrogen charging method. Right after hydrogen was diffused from the specimen surface to the inside of the X70, the small punch tests and hydrogen concentration analysis was conducted within 5 minutes. Hydrogen was analyzed by melting the whole specimen and detect the gas after melting. Mechanical properties were measured by the small punch (SP) testing. Fracture surface and specimen surface were observed using scanning electron microscope. Three tests were repeated for study sensitivity of the SP test results under a same charging condition. It was observed that the variation of the maximum load, SP displacement at failure, hydrogen concentration as the charging period was not much in the case of X70 as the other steel such as Inconel. It can be argued that X70 base metal may have high hydrogen damage resistance and hydrogen diffusion in the base metal would not cause much embrittlement. Limitations of the SP test with 0.5 mm thickness for hydrogen damage test for X70 were discussed.

Influence of Current Density Application Time on the Corrosion Damage of Offshore Wind Steel Substructure in Galvanostatic Corrosion Experiment (해상풍력 하부 구조물용 강재의 정전류 부식 시험 시 전류밀도 인가 시간이 부식손상에 미치는 영향)

  • Lee, Jung-Hyung;Park, Jae-Cheul;Han, Min-Su;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.431-438
    • /
    • 2016
  • This research investigated the relationship between the corrosion damage characteristics of offshore wind steel substructure and the time of current density application by electrochemical accelerated short-term corrosion test. The galvanostatic corrosion was conducted on the steel specimens in natural seawater with a constant current density ranging from $1mA/cm^2$ to $200mA/cm^2$ for 1 ~ 180 min. Macro and micro observation was carried out on the surface of the corrosion damaged area using SEM and 3-dimensional analysis microscope. The weight loss of the specimens before and after was calculated as the difference between the initial weight prior to corrosion and weight after removal of the corrosion product. It was shown that during galvanostaic corrosion process, the corrosion behavior could be characterized by the onset of pitting corrosion in the early stage and the uniform corrosion in the late stage, showing damage development in the depth direction with the time of current application. The result of the 3D analysis revealed that both damage depth and surface roughness increased with increasing time of current application. The weight loss curves with time showed that a coefficient of determination ($R^2$) was relatively high for the relationship between the time of current application and weight loss. As a result, the degree of corrosion can be controlled by simply varying the time of current application.

Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test (순환동전위 분극실험을 이용한 스테인리스강의 그린데스용액에서 전기화학적 특성에 미치는 온도의 영향)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.266-280
    • /
    • 2021
  • Since 2020, the International Maritime Organization (IMO) has updated regulations on the sulfur content to be less than 0.5% in exhaust gas emitted from ships. Accordingly, the exhaust gas post-treatment device for ships, which is SOx/NOx reduction technology, was introduced. However, the exhaust gas post-treatment device is suffering corrosion because of the harsh corrosive environment formed by sulfate and chlorine oxide through the desulfurization process. In this investigation, cyclic potentiodynamic polarization (CPDP) experiment for UNS S31603 and UNS N08367 was performed in a green death solution that simulates the environment of a desulfurization device. The corrosion rate of UNS S31603 at the highest temperature was about 3 times higher than that of UNS N83067. Also, electron microscope scan revealed corrosion type UNS N83067 presents intergranular corrosion tendency. On the other hand, UNS S31603 was observed as general corrosion. The α values of UNS N08367 at 30 ℃ and 60 ℃ were higher than those of UNS S31603, thus UNS N08367 is considered to have a higher local damage tendency. Whereas, since the α value of UNS S31603 at 90 ℃ is larger than that of UNS N08367, UNS S31603 is considered to have a higher local damage trend.

Electrochemical Detection of Pesticide in Living Plant and Fish Brain Cell

  • Lee, Chang-Hyun;Ly, Suw-Young
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.941-949
    • /
    • 2010
  • The three electrode system was used to detect the pesticide fenitrothion ($C_9H_{12}NO_5PS$. MW=277.24) using cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV). The working electrode was mercury immobilized on a carbon nanotube paste electrode (Hg-CNTPE). At the optimized condition, the limit of detection (LoD) was 0.6 ppt ($2.16{\times}10^{-12}\;M$), and the relative standard deviation was 0.035% (n=15). And there is more sensitive in detecting fenitrothion than common type carbon nanotube paste electrode. When it was implanted into the brain of live fish (carp), the existence of fenitrothion was measured without any destruction or damage of tissue.

Topology Optimization for End Plate of Fuel Cell Stack (연료전지스택 바깥판의 위상최적설계)

  • Choi, Woo-Seok;Oh, Sung-Jin;Kim, Sung-Jong;Hong, Byung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.456-461
    • /
    • 2003
  • A fuel cell is an electrochemical device in which the energy of a chemical reaction is converted directly into electricity. By combining hydrogen fuel with oxygen from air, electricity is formed, without combustion of any form. Water and heat are the only by-products when hydrogen is used as the fuel source. Fuel cell stack consists of multi-layered unit cells. A unit cell consists of MEA and bipolar plates. The end plate of fuel cell stack should give a uniform distributed pressure to multi unit cell layers so as to reduce the contact resistance and to prevent the leakage of reactant gases and the damage of multi layer components. The current end plate is redundantly large and heavy. It makes the power per unit volume reduced. Topology optimization of end plate is conducted for mass reduction and enhancement of bending rigidity. The evaluation of the current design and the recommendation for the future design is remarked.

  • PDF

A Study on Preventing Cracks at the Small Hole Exit in Ultrasonic Machining Using a Wax Coating (초음파 미세구멍 관통가공에서 왁스 코팅을 이용한 출구크랙 방지에 관한 연구)

  • Li, Hang;Ko, Tae Jo;Baek, Dae Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • Ultrasonic machining (USM) does not involve heating or any electrochemical effects, and subsequently causes low surface damage, has small residual stress, and does not rely on the conductivity of the workpiece. These characteristics are suitable for the machining of brittle materials, such as glass or ceramics. However, USM for brittle materials generates cracks on the workpiece while machining, especially at the hole exit with a small diameter. In this study, wax coating was used to deposit wax on the back side of the workpiece to decrease the occurrence of cracks at the exit holes in USM, and it was finally removed with a cleaning process. The experimental results show that this technique is beneficial for restricting the occurrence of cracks in glass or ceramics.

A Study on the IR Drop in Crevice of AISI 304 Stainless Steel by Temperature Variation (온도변화에 따른 AISI 304SS의 틈내 전위강하에 관한 연구)

  • 나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.872-878
    • /
    • 2003
  • As the results of recent industrial development, many industrial plants and marine structures are exposed to severe corrosion environment than before. Especially, under the wet environment, crevice corrosion damage problems necessarily occur and encourage many interests to prevent them. In this study, the electrochemical polarization test was carried out to study characteristics of crevice corrosion for AISI 304 stainless steel in various solution temperatures. The results are as follows ; 1) as the solution temperature increased in IN $\textrm{H}_2\textrm{SO}_4$, the passive current density and critical current density were increased, whereas corrosion potential and break down potential were nearly constant, 2) as the solution temperature increased. the induced time for initiation of crevice corrosion was shortened. 3) The potential range in the crevice was -220mV/SCE to -380mV/SCE according to the distance from the crevice opening, which is lower than that of external surface of -200mV/SCE.

A review on electrically debonding Adhesives (전기해체 접착제)

  • Jeong, Jongkoo
    • Journal of Adhesion and Interface
    • /
    • v.19 no.2
    • /
    • pp.84-94
    • /
    • 2018
  • Electrically debonding adhesives[EDA], one of the controlled delamination materials[CDM] is reviewed. CDM can be defined as the ability to separate adhesive bonded assemblies without causing damage to the substrates. Its application includes electronics, medical surgery, dentistry, building and general manufacturing where the opportunity to separate assemblies is important. There are several important mechanisms of EDAs; faradaic reaction, phase separation and anode detachment, cathodic debonding, gas emission mechanism, and mechanical stresses. These mechanisms are reviewed with various research results. Since the mechanism behind the electrochemical debonding of adhesives is not well understood, this review aims to help the research scientists in the industries. Finally, new applications of EDA are introduced as new business opportunity.