• 제목/요약/키워드: Electrochemical catalyst

검색결과 342건 처리시간 0.025초

아연공기이차전지용 La1-xSrxCoO3 양극촉매의 제조 및 이를 적용한 양극의 전기화학적 특성연구 (Synthesis and Electrochemical Evaluation of La1-xSrxCoO3 Cathode Material for Zinc Air Secondary Batteries Application)

  • 엄승욱;선양국
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.447-452
    • /
    • 2008
  • We synthesized nano-sized $La_{1-x}Sr_xCoO_3$ ($x=0.1{\sim}0.4$) cathode catalyst for the zinc air secondary batteries by citrate method, And we measured the cathode's electrochemical characteristics according to content of strontium compose the cathode catalyst. We controlled the pH of precursor solution by 10 in the process of manufacturing the precursor, We heat treated the prepared precursor at various calcination temperature ($500{\sim}900^{\circ}C$), and examined the optimum calcinations temperature by XRD analysis and electrochemical evaluation. We examined the ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) performance of the prepared $La_{1-x}Sr_xCoO_3$ catalyst powder. When we consider ORR and OER performance simultaneously, $La_{0.7}Sr_{0.3}CoO_3$ catalyst has shown the best performance because of its lowest voltage deference between charge and discharge.

Process and Characteristics of High Power Catalyst Electrode for PEM Fuel Cell

  • Chang H.;Lim C.;Kim J.
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.171-175
    • /
    • 1999
  • Novel process for high power catalyst electrode for PEM fuel cell has been developed. MEA having this catalyst electrode showed $0.5W/cm^2\;with\;0.2mg/cm^2$ of Pt loading at aunospheric humid hydrogen and oxygen condition. In this process, platinized carbon and plain carbon powders were coated with ionomer (Nafion) and hydrophobic polymer (PTFE), respectively and it could maximize two roles of catalyst electrode, l.e., reaction and gas supplying component. Those polarization characteristics proved the improved performance by reducing potential drop especially in the concentration polarization region.

고분자전해질용 연료전지의 전극 촉매중 특성에 관한 연구 (Studies on the Characteristics of the Catalyst Layer of the PEMFC Electrode)

  • ;임재욱;유형균;류호진
    • 전기화학회지
    • /
    • 제6권1호
    • /
    • pp.65-67
    • /
    • 2003
  • The present paper highlights on the need to understand the correlation of the characteristics of the catalyst layer with the performance of the polymer electrolyte membrane fuel cell (PEMFC). This paper deals with the correlation of the platinum loading in the catalyst layer and the performance of the polymer electrolyte membrane fuel cell and also the correlation of the required hydrophilicity/hydrophobicity in the catalyst layer to get the optimum performance under given operating conditions.

Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries

  • Park, Myounggu;Kim, Ka Young;Seo, Hyeryun;Cheon, Young Eun;Koh, Jae Hyun;Sun, Heeyoung;Kim, Tae Jin
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권1호
    • /
    • pp.1-18
    • /
    • 2014
  • Li-air cell is an exotic type of energy storage and conversion device considered to be half battery and half fuel cell. Its successful commercialization highly depends on the timely development of key components. Among these key components, the catalyst (i.e., the core portion of the air electrode) is of critical importance and of the upmost priority. Indeed, it is expected that these catalysts will have a direct and dramatic impact on the Li-air cell's performance by reducing overpotentials, as well as by enhancing the overall capacity and cycle life of Li-air cells. Unfortunately, the technological advancement related to catalysts is sluggish at present. Based on the insights gained from this review, this sluggishness is due to challenges in both the commercialization of the catalyst, and the fundamental studies pertaining to its development. Challenges in the commercialization of the catalyst can be summarized as 1) the identification of superior materials for Li-air cell catalysts, 2) the development of fundamental, material-based assessments for potential catalyst materials, 3) the achievement of a reduction in both cost and time concerning the design of the Li-air cell catalysts. As for the challenges concerning the fundamental studies of Li-air cell catalysts, they are 1) the development of experimental techniques for determining both the nano and micro structure of catalysts, 2) the attainment of both repeatable and verifiable experimental characteristics of catalyst degradation, 3) the development of the predictive capability pertaining to the performance of the catalyst using fundamental material properties. Therefore, under the current circumstances, it is going to be an extremely daunting task to develop appropriate catalysts for the commercialization of Li-air batteries; at least within the foreseeable future. Regardless, nano materials are expected to play a crucial role in this field.

소형 직접 메탄올 연료전지를 위한 나노 합금 전극 (Nanostructured Alloy Electrode for use in Small-Sized Direct Methanol Fuel Cells)

  • 박경원;최종호;박인수;남우현;성영은
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2003년도 연료전지심포지움 2003논문집
    • /
    • pp.83-88
    • /
    • 2003
  • PtRu alloy and $PtRu-WO_3$ nanocomposite thin-film electrodes for methanol electrooxidation were fabricated by means of a sputtering method. The structural and electrochemical properties of well-defined PtRu alloy thin-film electrodes were characterized using X-ray diffraction, Rutherford backscattering spectroscopy. X-ray photoelectron spectroscopy, and electrochemical measurements. The alloy thin-film electrodes were classified as follows: Pt-based and Ru-based alloy structure. Based on structural and electrochemical understanding of the PtRu alloy thin-film electrodes, the well-controlled physical and (electro)chemical properties of $PtRu-WO_3$, showed superior specific current to that of a nanosized PtRu alloy catalyst, The homogeneous dispersion of alloy catalyst and well-formed nanophase structure would lead to an excellent catalytic electrode reaction for high-performance fuel cells. In addition, the enhanced catalytic activity in nanocomposite electrode was found to be closely related to proton transfer in tungsten oxide using in-situ electrochemical transmittance measurement.

  • PDF

카본나노튜브에 담지된 몰리브데늄 카바이드 촉매의 제조 및 전기화학적 산화반응 특성 (Fabrication of Carbon Nanotube Supported Molybdenum Carbide Catalyst and Electrochemical Oxidation Properties)

  • 조홍백;서민호;박융호
    • 공업화학
    • /
    • 제20권1호
    • /
    • pp.28-33
    • /
    • 2009
  • 카본나노튜브에 담지된 몰리브데늄 카바이드 촉매를 다양한 제조 조건을 통해 제조하여 촉매특성을 분석하였고, 메탄올의 전기화학적 산화반응을 통해 촉매의 활성을 비교하였다. 촉매로써 전이금속의 낮은 활성을 극복하기 위한 방안으로 카본나노튜브를 지지체로 사용하였으며 전구체의 양 및 종류, 지지체의 산처리 방법, 탄화공정 온도조건 등을 변화하여 촉매를 제조하였다. 제조된 촉매는 ICP-AES, XRD, TEM을 통하여 촉매의 특성을 분석하였고, 메탄올의 전기화학적 산화반응을 통해 촉매의 활성을 비교하였다. 몰리브데늄 카바이드 촉매($Mo_2C/CNT$)의 다양한 제조방법으로 입자크기와 담지량을 변화시킬 수 있었으며, 입자의 크기와 담지량의 변화에 따른 전기화학적 산화반응의 특성을 설명할 수 있었다.

Lanthanum Stannate Pyrochlore 촉매를 이용한 전기화학 촉매 셀의 제조 및 NOx 분해 특성 분석 (Fabrication of an Electrochemical Cell using a Lanthanum Stannate Pyrochlore Catalyst and its Characterization of NOx Gas Decomposition)

  • 박사로한;문주호
    • 한국세라믹학회지
    • /
    • 제39권10호
    • /
    • pp.988-993
    • /
    • 2002
  • Lanthanum Stannate Pyrochlore($La_2Sn_2O_7$) 촉매를 이용하여 $NO_x$ 제거를 위한 전기화학 촉매 셀을 제조하였다. 촉매전극은 수열합성법을 통해 합성한 $La_2Sn_2O_7$ 분말과 안정화 지르코니아(YSZ) 분말을 혼합하여 촉매층 페이스트를 제조한 후 이를 YSZ 디스크 고체전해질 위에 스크린프린팅하여 후막을 도포하였다. 위와 같이 제조한 전기화학 셀의 $NO_x$ 분해 실험은 galvanostat을 이용하여 셀에 일정한 전류를 인가하고 700${\circ}C$에서 NO 0.1%와 산소 2%의 반응가스에 대한 분해 정도를 gas chromatography와 NOx analyzer를 이용하여 측정을 하였다. 촉매 전극의 두께와 소성 온도에 따른 촉매전극의 미세구조가 $NO_x$ 분해에 미치는 영향과 전류량(0.05∼0.6A)에 따른 $NO_x$ 분해율을 측정하였다.

Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process

  • Jana, Jayasmita;Ngo, Yen-Linh Thi;Chung, Jin Suk;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권3호
    • /
    • pp.220-237
    • /
    • 2020
  • Modern electrochemical energy devices involve generation and reduction of fuel gases through electrochemical reactions of water splitting, alcohol oxidation, oxygen reduction, etc. Initially, these processes were executed in the presence of noble metal-based catalyst that showed low overpotential and high current density. However, its high cost, unavailability, corrosion and related toxicity limited its application. The search for alternative with high stability, durability, and efficiency led scientists towards carbon nanoparticles supported catalysts which has high surface area, good electrical conductivity, tunable morphology, low cost, ease of synthesis and stability. Carbon nanoparticles are classified into two groups based on morphology, one and zero dimensional particles. Carbon nanoparticles at zero dimension, denoted as carbon dots, are less used carbon support compared to other forms. However, recently carbon dots with improved electronic properties have become popular as catalyst as well as catalyst support. This review focused on the recent advances in electrocatalytic activities of carbon dots. The mechanisms of common electrocatalytic reactions and the role of the catalysts are also discussed. The review also proposed future developments and other research directions to overcome current limitations.

Pt-Ru/PPy/Nafion 복합체 전극의 메탄을 산화 특성 (Electrochemical Characteristics on Methanol Oxidation of Pt-Ru/PPy/Nafion Composite Electrode)

  • 조승구;박종호
    • 전기화학회지
    • /
    • 제7권4호
    • /
    • pp.201-205
    • /
    • 2004
  • 본 연구에서는 Pt-Ru 촉매를 $H_2PtCI_6$$RuCl_3$ 용액을 화학적 환원에 의해 전도성 고분자인 폴리피롤을 중합시킨 Nafion 막위에 직접 침적시켰다 EDS 분석 결과 Pt 및 Ru 촉매는 Ppy/Nafion 표면에 주로 분포하는 것을 알 수 있었다. 또한 폴리피롤이 중합된 Nanon 위에 침적시킨 Pt-Ru 촉매의 메탄올에 대한 전기화학적 산화특성을 CV로 평가하였다. 메탄을 산화 개시 전위는 Ru촉매에 사용이 증가함에 따라 음전위 방향으로 전이되었다. 따라서 폴리피롤이 중합된 Nafion표면에 Pt-Ru촉매를 직접 함침할 수 있었고. 메탄올 산화 특성을 나타내는 전극을 제작할 수 있었다.