• 제목/요약/키워드: Electrochemical Impedance

검색결과 902건 처리시간 0.026초

Effect of Microstructure on Corrosion Behavior of TiN Hard Coatings Produced by Two Grid-Attached Magnetron Sputtering

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • 제5권1호
    • /
    • pp.15-22
    • /
    • 2006
  • The introduction of two-grid inside a conventional process system produces a reactive coating deposition and increases metal ion ratio in the plasma, resulting in denser and smoother films. The corrosion behaviors of TiN coatings were investigated by electrochemical methods, such as potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) in deaerated 3.5% NaCl solution. Electrochemical tests were used to evaluate the effect of microstructure on the corrosion behavior of TiN coatings exposed to a corrosive environment. The crystal structure of the coatings was examined by X-ray diffractometry (XRD) and the microstructure of the coatings was investigated by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). In the potentiodynamic polarization test and EIS measurement, the corrosion current density of TiN deposited by two grid-attached magnetron sputtering was lower than TiN deposited by conventional magnetron type and also presented higher Rct values during 240 h immersion time. It is attributed to the formation of a dense microstructure, which promotes the compactness of coatings and yields lower porosity.

Comparative Study and Electrochemical Properties of LiFePO4F Synthesized by Different Routes

  • Huang, Bin;Liu, Suqin;Li, Hongliang;Zhuang, Shuxin;Fang, Dong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2315-2319
    • /
    • 2012
  • To improve the performance of $LiFePO_4F$, a novel sol-gel process is developed. For comparison, ceramic process is also implemented. From X-ray diffraction results we know that each sample adopts a triclinic $P{\bar{1}}$ space group, and they are isostructural with amblygonite and tavorite. The scanning electron microscope images show that the homogeneous grains with the dimension of 300-500 nm is obtained by the sol-gel process; meanwhile the sample particles obtained by ceramic process are as big as 1000-3000 nm. By galvanostatic tests and at electrochemical impedance spectroscopy method, the sample obtained by sol-gel process presents better electrochemical properties than the one obtained by ceramic process.

염료감응형 태양전지의 상대전극용 Pt의 제조방법에 따른 전기화학적 특성 (Electrochemical properties of Pt electrodes fabricated by other methode as counter electrode of DSC)

  • 김현주;이동윤;구보근;이원재;송재성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2016-2018
    • /
    • 2005
  • Dye-sensitized solar cell (DSC) consist of oxidation semiconduction electrode, electrolyte and counter electrode. Among these, Pt as counter electrode of DSC plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, electrochemical behavior of the electro-plated Pt electrode was compared with that of the sputtered Pt electrode, using cyclic-voltammetry and impedance spectroscopy (PARSTATE 2273, by AMETEK). Surface morphology of Pt electrode was investigated by AFM (XE-100, by PSIA). As a result, it was considered that electrochemical properties of sputtered Pt electrode is superior to that of electro-plated Pt electrode.

  • PDF

인발률에 따른 자동차 냉각 배관용 Al 합금의 부식 특성에 관한 연구 (Effect of Drawing Rate on the Corrosion Behavior of Al Alloy Tubes for Automotive Cooling System)

  • 박병준;김정구;안승호;곽동호;손현수
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.489-494
    • /
    • 2008
  • The effect of drawing rate on the electrochemical properties of 3003 Al alloys in 5 wt.% NaCl solution was investigated by electrochemical techniques (potentiodynamic polarization test, potentiostatic polarization test, electrochemical impedance spectroscopy (EIS)) and surface analyses (OM, SEM, EDS). Four kinds of automotive pipe materials were prepared (raw material, drawing rate = 5, 10, 15%). As the drawing rate of Al alloy tube increased, the pitting corrosion resistance increased due to the enrichment of Al oxides on the surface.

Ag925의 전기화학적 특성에 미치는 네오디뮴 함량의 영향 (Effect of Neodymium concentration on electrochemical properties of 925 silver)

  • 신병현;정승진;정원섭
    • 한국표면공학회지
    • /
    • 제54권2호
    • /
    • pp.71-76
    • /
    • 2021
  • Ag925, silver with added copper, is popular alloy due to its low price. However, it has a difficult to use because of the low corrosion resistance. In various alloys, neodymium (Nd) works as an element to improve corrosion resistance by reacting with interstitial elements in the alloy. When 1.5 wt. % Neodymium was added to Ag925, the potential on the activated polarization in a potentiodynamic polarization test was increased from -0.15 V to -0.05 V. Ag925 with added neodymium showed the passivation after activation polarization. But When the potential increased around 50 mV, the current density is increased to 3 × 10-3. Ag925 with the 1.5 wt. % Nd had the low corrosion rate.

Stability Tests on Anion Exchange Membrane Water Electrolyzer under On-Off Cycling with Continuous Solution Feeding

  • Niaz, Atif Khan;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.369-376
    • /
    • 2022
  • In this study, the stability of an anion exchange membrane water electrolyzer (AEMWE) cell was evaluated in an on-off cycling operation with respect to an applied electric bias, i.e., a current density of 500 mA cm-2, and an open circuit. The ohmic and polarization resistances of the system were monitored during operation (~800 h) using electrochemical impedance spectra. Specific consideration was given to the ohmic resistance of the cell, especially that of the membrane under on-off cycling conditions, by consistently feeding the cell with KOH solution. Owing to an excess feed solution, a momentary increase in the polarization resistance was observed immediately after the open-circuit. The excess feed solution was mostly recovered by subjecting the cell to the applied electric bias. Stability tests on the AEMWE cell under on-off cycling with continuous feeding even under an open circuit can guarantee long-term stability by avoiding an irreversible increase in ohmic and polarization resistances.

The Effect of the Anode Thickness on Electrolyte Supported SOFCs

  • So Yeon Shin;Dae-Kwang Lim;Taehee Lee;Sang-Yun Jeon
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.145-151
    • /
    • 2023
  • Planer-type electrolyte substrates are often utilized for stack manufacturing of electrolyte-supported solid oxide fuel cells (ES-SOFCs) to fulfill necessary requirements such as a high mechanical strength and redox stability. This work did an electrochemical analysis of ES-SOFC with different NiO-YSZ anode thicknesses to find the optimal value for the high performance of the fuel cell. The cell resistivities were constant at anode thickness between 25-58 ㎛, but a thick anode (74 ㎛) caused a high electrode resistivity leading to a dramatic reduction in cell performance. A stability test was performed for 50 hours at 700℃, and the results showed a degradation rate of 0.3% per 1000 h by extrapolated fitting.

Effect of Zinc Addition in Filler Metal on Sacrificial Anode Cathodic Protection of Fin-Tube Aluminum Heat Exchanger

  • Yoon-Sik So;Eun-Ha Park;Jung-Gu Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.349-360
    • /
    • 2023
  • This study investigated the tri-metallic galvanic coupling of different metals in the tubes, fillers, and fins of a heat exchanger. The goal was to prevent corrosion of the tubes using the fin as a sacrificial anode while ensuring that the filler metal has a more noble potential than the fin, to avoid detachment. The metals were arranged in descending order of corrosion potential, with the noblest potential assigned to the tube, followed by the filler metal and the fin. To address a reduction in protection current of the fin, the filler metal was modified by adding Zn to decrease its corrosion potential. However, increasing the Zn content of filler metal also increases its corrosion current. The study examined three different filler metals, considering their corrosion potential, and kinetics. The results suggest that a filler metal with 1.5 wt.% Zn addition is optimal for providing cathodic protection to the tube while reducing the reaction rate of the sacrificial anode.

Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhock-shaped CdS-TiO2 Composites

  • Lee, Ga-Young;Lee, Hu-Ryul;Um, Myeong-Heon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3043-3047
    • /
    • 2012
  • To investigate the scattering layer effect of a $TiO_2$ multilayer in dye-sensitized solar cells (DSSCs), we designed a new DSSC system, assembled with a CdS-$TiO_2$ scattering layer electrode. A high-magnification SEM image exhibited hollyhock-like particles with a width of 1.5-2.0 ${\mu}m$ that were aggregated into 10-nm clumps in a hexagonal petal shape. The efficiency was higher in the DSSC assembled with a CdS-$TiO_2$ scattering layer than in the DSSC assembled with $TiO_2$-only layers, due to the decreased resistance in electrochemical impedance spectroscopy (EIS). The short-circuit current density ($J_{sc}$) was increased by approximately 7.26% and the open-circuit voltage ($V_{oc}$) by 2.44% over the 1.0 wt % CdS-$TiO_2$ composite scattering layer and the incident photon-to-current conversion efficiency (IPCE) in the maximum peak was also enhanced by about 5.0%, compared to the DSSC assembled without the CdS-$TiO_2$scattering layer.

중방식도료의 내식성에 관한 전기화학적 평가 (An Electrochemical Evaluation on the Corrosion Resistance of Heavy Anticorrosive Paint)

  • 성호진;김진경;이명훈;김기준;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.519-525
    • /
    • 2005
  • An electrochemical evaluation on the corrosion resistance for heavy anticorrosive paint(DFT:25um) was carried out for 5 kinds of heavy anticorrosive paints such as high solid epoxy(HE), solvent free epoxy(SE). tar epoxy(TE), phenol epoxy(PE). and ceramic epoxy(CE). Corrosion current densities obtained by Tafel extrapolation method from anodic and cathodic polarization curves didn't correspond with the values obtained by AC impedance measurement, however, the values of polarization resistance obtained from the cyclic voltammogram showed a good tendency corresponding well with the values of AC impedance measurement. Futhermore there was a good correlation against the corrosion resistance evaluation between passivity current density of the anodic polarization curve and diffusion limiting current density of the cathodic polarization curve. And corrosion resistance increased with corrosion potential shifting to noble direction. From the results discussed above. HE and CE had a relatively good corrosion resistance than other heavy anticorrosive paints.