DOI QR코드

DOI QR Code

Stability Tests on Anion Exchange Membrane Water Electrolyzer under On-Off Cycling with Continuous Solution Feeding

  • Niaz, Atif Khan (School of Materials Science and Engineering, Changwon National University) ;
  • Lim, Hyung-Tae (School of Materials Science and Engineering, Changwon National University)
  • Received : 2022.03.25
  • Accepted : 2022.05.05
  • Published : 2022.08.28

Abstract

In this study, the stability of an anion exchange membrane water electrolyzer (AEMWE) cell was evaluated in an on-off cycling operation with respect to an applied electric bias, i.e., a current density of 500 mA cm-2, and an open circuit. The ohmic and polarization resistances of the system were monitored during operation (~800 h) using electrochemical impedance spectra. Specific consideration was given to the ohmic resistance of the cell, especially that of the membrane under on-off cycling conditions, by consistently feeding the cell with KOH solution. Owing to an excess feed solution, a momentary increase in the polarization resistance was observed immediately after the open-circuit. The excess feed solution was mostly recovered by subjecting the cell to the applied electric bias. Stability tests on the AEMWE cell under on-off cycling with continuous feeding even under an open circuit can guarantee long-term stability by avoiding an irreversible increase in ohmic and polarization resistances.

Keywords

Acknowledgement

This research was supported by Changwon National University in 2021-2022.

References

  1. J. Ikaheimo, R. Weiss, J. Kiviluoma, E. Pursiheimo, T.J. Lindroos, Appl. Energy, 2022, 305, 117713. https://doi.org/10.1016/j.apenergy.2021.117713
  2. C. Tolliver, A.R. Keeley, S. Managi, J. Cleaner Prod., 2020, 244, 118643. https://doi.org/10.1016/j.jclepro.2019.118643
  3. K. Oshiro, S. Fujimori, Appl. Energy, 2022, 313, 118803. https://doi.org/10.1016/j.apenergy.2022.118803
  4. M.I. Aydin, I. Dincer, Energy, 2022, 245, 123090. https://doi.org/10.1016/j.energy.2021.123090
  5. P.D. Lund, J. Mikkola, J. Ypya, J. Cleaner Prod., 2015, 103, 437-445. https://doi.org/10.1016/j.jclepro.2014.06.005
  6. H. Ritchie, M. Roser, P. Rosado, Energy, 2020, https://ourworldindata.org/energy.
  7. S. Singla, N.P. Shetti, S. Basu, K. Mondal, T.M. Aminabhavi, J. Environ. Manage., 2022, 302, 113963. https://doi.org/10.1016/j.jenvman.2021.113963
  8. D. Zhang, H. Zhu, H. Zhang, H.H. Goh, H. Liu, T. Wu, Energy, 2022, 238, 121774. https://doi.org/10.1016/j.energy.2021.121774
  9. A. Skorek-Osikowska, Int. J. Hydrog. Energy, 2022, 47(5), 3284-3293. https://doi.org/10.1016/j.ijhydene.2021.01.002
  10. H. Mehrjerdi, H. Saboori, S. Jadid, J. Energy Storage, 2022, 45, 103745. https://doi.org/10.1016/j.est.2021.103745
  11. D. Guilbert, G. Vitale, Clean Technol., 2021, 3(4), 881-909. https://doi.org/10.3390/cleantechnol3040051
  12. C. Santoro, A. Lavacchi, P. Mustarelli, V. Di Noto, L. Elbaz, D. Dekel, F. Jaouen, ChemSusChem, 2022, 15(8), e202200027. https://doi.org/10.1002/cssc.202200027
  13. M. Mandal, ChemElectroChem, 2021, 8(1), 36-45. https://doi.org/10.1002/celc.202001329
  14. D. Li, E.J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E.D. Baca, Nat. Energy, 2020, 5(5), 378-385. https://doi.org/10.1038/s41560-020-0577-x
  15. X. Wu, K. Scott, Int. J. Hydrog. Energy, 2013, 38, 3123-3129. https://doi.org/10.1016/j.ijhydene.2012.12.087
  16. I. Vincent, A. Kruger, D. Bessarabov, Int. J. Hydrog. Energy, 2017,42, 10752-10761. https://doi.org/10.1016/j.ijhydene.2017.03.069
  17. M. Faraj, M. Boccia, H. Miller, F. Martini, S. Borsacchi, M. Geppi, A. Pucci, Int. J. Hydrog. Energy, 2012, 37(20), 14992-15002. https://doi.org/10.1016/j.ijhydene.2012.08.012
  18. J. Parrondo, V. Ramani, J. Electrochem. Soc., 2014, 161(10), F1015. https://doi.org/10.1149/2.0601410jes
  19. A.K. Niaz, A. Akhtar, J.-Y. Park, H.-T. Lim, J. Power Sources, 2021, 481, 229093. https://doi.org/10.1016/j.jpowsour.2020.229093
  20. F. Razmjooei, A. Farooqui, R. Reissner, A. Gago, S.A. Ansar, K.A. Friedrich, ChemElectroChem, 2020, 7(19), 3951-3960. https://doi.org/10.1002/celc.202000605
  21. A. Lim, H.-j. Kim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, S.Y. Lee, Y.-E. Sung, J.H. Jang, H.S. Park, J. Ind. Eng. Chem., 2019, 76, 410-418. https://doi.org/10.1016/j.jiec.2019.04.007
  22. M.K. Cho, H.-Y. Park, H.J. Lee, H.-J. Kim, A. Lim, D. Henkensmeier, S.J. Yoo, J.Y. Kim, S.Y. Lee, H.S. Park, J. Power Sources, 2018, 382, 22-29. https://doi.org/10.1016/j.jpowsour.2018.02.025
  23. J. Parrondo, C.G. Arges, M. Niedzwiecki, E.B. Anderson, K.E. Ayers, V. Ramani, Rsc Adv., 2014, 4(19), 9875-9879. https://doi.org/10.1039/c3ra46630b
  24. W.E. Mustain, M. Chatenet, M. Page, Y.S. Kim, Energy Environ. Sci., 2020, 13(9), 2805-2838. https://doi.org/10.1039/D0EE01133A
  25. P. Fortin, T. Khoza, X. Cao, S.Y. Martinsen, A.O. Barnett, S. Holdcroft, J. Power Sources, 2020, 451, 227814. https://doi.org/10.1016/j.jpowsour.2020.227814
  26. A. Carbone, S.C. Zignani, I. Gatto, S. Trocino, A. Arico, Int. J. Hydrog. Energy, 2020, 45(16), 9285-9292. https://doi.org/10.1016/j.ijhydene.2020.01.150
  27. L. Wang, T. Weissbach, R. Reissner, A. Ansar, A.S. Gago, S. Holdcroft, K.A. Friedrich, ACS Appl. Energy Mater., 2019, 2(11), 7903-7912.
  28. J.E. Park, S.Y. Kang, S.-H. Oh, J.K. Kim, M.S. Lim, C.-Y. Ahn, Y.-H. Cho, Y.-E. Sung, Electrochim. Acta, 2019, 295, 99-106. https://doi.org/10.1016/j.electacta.2018.10.143
  29. Z. Liu, S.D. Sajjad, Y. Gao, H. Yang, J.J. Kaczur, R.I. Masel, Int. J. Hydrog. Energy, 2017, 42(50), 29661-29665. https://doi.org/10.1016/j.ijhydene.2017.10.050
  30. G. Papakonstantinou, G. Algara-Siller, D. Teschner, T. Vidakovic-Koch, R. Schlogl, K. Sundmacher, Appl. Energy, 2020, 280, 115911. https://doi.org/10.1016/j.apenergy.2020.115911
  31. S.M. Alia, S. Stariha, R.L. Borup, J. Electrochem. Soc., 2019, 166(15), F1164. https://doi.org/10.1149/2.0231915jes
  32. A. Weiss, A. Siebel, M. Bernt, T.-H. Shen, V. Tileli, H. Gasteiger, J. Electrochem. Soc., 2019, 166(8), F487. https://doi.org/10.1149/2.0421908jes
  33. Z. Sun, G. Wang, S.W. Koh, J. Ge, H. Zhao, W. Hong, J. Fei, Y. Zhao, P. Gao, H. Miao, Adv. Funct. Mater., 2020, 30(27), 2002138. https://doi.org/10.1002/adfm.202002138
  34. A.K. Niaz, W. Lee, S. Yang, H.-T. Lim, J. Electrochem. Sci. Tech., 2021, 12(3), 358-364. https://doi.org/10.33961/jecst.2021.00094
  35. I. Dedigama, D.J. Brett, T.J. Mason, J. Millichamp, P.R. Shearing, K.E. Ayers, ECS Trans., 2015, 68(3), 117.
  36. A.K. Niaz, J.-Y. Park, H.-T. Lim, Int. J. Hydrog. Energy, 2021, 46(62), 31550-31562. https://doi.org/10.1016/j.ijhydene.2021.07.078
  37. Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.-Y. Wang, J. Am. Chem. Soc., 2012, 134(22), 9054-9057. https://doi.org/10.1021/ja302439z