• Title/Summary/Keyword: Electrochemical Corrosion Test

Search Result 353, Processing Time 0.028 seconds

Electrochemical and Cavitation-Erosion Characteristics of Duplex Stainless Steels in Seawater Environment (해수 환경에서 듀플렉스 스테인리스강의 전기화학적 거동 및 캐비테이션 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.466-474
    • /
    • 2021
  • A wet type scrubber for merchant vessel uses super austenitic stainless steels with pitting resistance equivalent number (PREN) of 40 or higher for operation in a harsh corrosive environment. However, it is expensive due to a high nickel content. Thus, electrochemical behavior and cavitation erosion characteristics of UNS S32750 as an alternative material were investigated. Microstructure analysis revealed fractions of ferritic and austenitic phases of 48% and 52%, respectively, confirming the existence of ferritic matrix and austenitic island. Potentiodynamic polarization test revealed damage at the interface of the two phases because of galvanic corrosion due to different chemical compositions of ferritic and austenitic phases. After a cavitation test, a compressive residual stress was formed on the material surface due to impact pressure of cavity. Surface hardness was improved by water cavitation peening effect. Hardness value was the highest at 30 ㎛ amplitude. Scanning electron microscopy revealed wave patterns due to plastic deformation caused by impact pressure of the cavity. The depth of surface damage increased with amplitude. Cavitation test revealed larger damage caused by erosion in the ferritic phase due to brittle fracture derived from different strain rate sensitivity index of FCC and BCC structures.

Effect of Applied Current Density on the Corrosion Damage of Steel with Accelerated Electrochemical Test (전기화학적 가속 부식 평가법에서 강재의 부식 손상에 미치는 인가전류밀도의 영향)

  • Lee, Jung-Hyung;Park, Il-Cho;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.423-430
    • /
    • 2016
  • In this study, we investigated the corrosion damage characteristics of steel for offshore wind turbine tower substructure using an accelerated electrochemical test. The galvanostatic corrosion test method was employed with a conventional 3 electrode cell in natural sea water, and the steel specimen was served as a working electrode to induce corrosion in an accelerated manner. Surface and cross-sectional image of the damaged area were obtained by optical microscope and scanning electron microscope. The weight of the specimens was measured to determine the gravimetric change before and after corrosion test. The result revealed that the steel tended to suffer uniform corrosion rather than localized corrosion due to active dissolution reaction under the constant current regime. With increasing galvanostatic current density, the damage depth and surface roughness of surface was increased, showing approximately 25 times difference in damage depth between the lowest current density ($1mA/cm^2$) and the highest current density ($200mA/cm^2$). The gravimetric observation showed that the weight loss was proportionally increased with increment of current density that has 75 times different according by experimental conditions. Consequently, uniform corrosion of the steel specimen was conveniently induced by the electrochemically accelerated corrosion technique, and it was possible to control the extent of the corrosion damage by varying the current density.

A Study of Localized Corrosion Mechanisms in the Multilayered Coatings by Cathodic Arc Deposition (음극아크증착법으로 합성한 다층박막의 국부부식 기구에 관한 연구)

  • 김호건;안승호;이정호;김정구;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.301-306
    • /
    • 2003
  • Multilayered WC-Ti/suv $1-x/Al_{x}$ N coatings were deposited on AISI D2 steel using cathodic arc deposition (CAD) method. These coatings contain structural defects such as pores or droplets. Thus, the substrate is not completely isolated from the corrosive environment. The growth defects (pores, pinholes) in the coatings are detrimental to corrosion resistance of the coatings used in severe corrosion environments. The localized corrosion behavior of the coatings was studied in deaerated 3.5 wt.% NaCl solution using electrochemical techniques (potentiodynamic polarization test) and surface analyses (GDOES, SEM, AES, TEM). The porosity was calculated from the result of potentiodynamic polarization test of the uncoated and coated specimens. The calculated porosity is higher in the $WC-Ti_{0.6}$ $Al_{0.4}$ N than others, which is closely related to the packing factor. The positive effects of greater packing factor act on inhibiting the passage of the corrosive electrolyte to the substrate and lowering the localized corrosion kinetics. From the electrochemical tests and surface analyses, the major corrosion mechanisms can be classified into two basic categories: localized corrosion and galvanic corrosion.

Influence of Carbon Fiber on Corrosion Behavior of Carbon Steel in Simulated Concrete Pore Solutions

  • Tang, Yuming;Dun, Yuchao;Zhang, Guodong;Zhao, Xuhui;Zuo, Yu
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2017
  • Galvanic current measurement, polarization curves, electrochemical impedance spectroscopy and weight loss test were used to study the corrosion behavior of carbon steel before and after carbon fibers coupling to the carbon steel in simulated concrete pore solutions, and the film composition on the steel surface was analyzed using XPS method. The results indicate that passive film on steel surface had excellent protective property in pore solutions with different pH values (13.3, 12.5 and 11.6). After coupling with carbon fibers (the area ratio of carbon steel to carbon fiber was 12.31), charge transfer resistance $R_{ct}$ of the steel surface decreased and the $Fe^{3+}/Fe^{2+}$ value in passive film decreased. As a result, stability of the film decreased and the corrosion rate of steel increased. Decreasing of the area ratio of steel to carbon fiber from 12.3 to 6.15 resulted in the decrease in $R_{ct}$ and the increase in corrosion rate. Especially in the pore solution with pH 11.6, the coupling leads the carbon steel to corrode easily.

Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Weldments (A106 Gr B강 용접열영향부에서의 피로균열성장특성)

  • 김철한;조선영;김복기;배동호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.263-268
    • /
    • 1999
  • With HAZ of A 106 Gr B steel weldment, fatigue test in air, electrochemical polarization test and corrosion fatigue test in 3.5wt.% NaCl solution were performed changing load ratio. Obtained results are as follows. 1) K$\sub$op/ was independent of K$\sub$max/ and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure 3) In the result of electrochemical polarization test, current density was increased abruptly when potential was larger than corrosion potential. 4) Fatigue crack growth rate in corrosive environment was markly higher than the rate in air because of corrosion characteristics of the material and anodization of inner surface crack.

  • PDF

Effect of operating conditions on carbon corrosion in High temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) (고온형 고분자 전해질막 연료전지(HT-PEMFC) 구동환경에 따른 탄소 담지체 부식 평가)

  • Lee, Jinhee;Kim, Hansung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.89.1-89.1
    • /
    • 2011
  • The influence of potential and humidity on the electrochemical carbon corrosion in high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs) is investigated by measuring $CO_2$ emission at different potentials for 30 min using on-line mass spectrometry. These results are compared with low tempterature polymer electrolyte membrane fuel cells(LT-PEMFCs) operated at lower temperature and higher humidity condition. Although the HT-PEMFC is operated at non humidified condition, the emitted $CO_2$ in the condition of HT-PEMFC is more than LT-PEMFC at the same potential in carbon corrosion test. Thus, carbon corrosion shows a stronger positive correlation with the cell temperature. In addition, the presence of a little amount of water activate electrochemical carbon corrosion considerably in HT-PEMFC. With increased carbon corrosion, changes in fuel cell electrochemical characteristics become more noticeable and thereby indicate that such corrosion considerably affects fuel cell durability.

  • PDF

PHASE TRANSITIONS AND ELECTROCHEMICAL CORROSION BEHAVIORS OF Ti50Ni50-xCux SHAPE MEMORY ALLOYS FOR METALLIC BIOMATERIALS

  • KWANGMIN LEE;SANGHYUN RHO
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1303-1306
    • /
    • 2020
  • TiNi alloys have excellent shape memory properties and corrosion resistance as well as high biocompatibility. This study investigated the effects of copper addition on the phase transitions and electrochemical corrosion behaviors of Ti50Ni50-xCux alloys. TiNi, Ti50Ni47Cu3, Ti50Ni44Cu6, and Ti50Ni41Cu9 alloys were prepared using vacuum arc remelting followed by 4 h homogenization at 950℃. Differential scanning calorimetry and X-ray diffraction analyses were conducted. The corrosion behaviors of the alloys were evaluated using potentiodynamic polarization test in Hank's balanced salt solution at a temperature of 36.5 ± 1℃. The TiNi alloy showed phase transitions from the cubic B2 phase to the monoclinic B19' phase when the alloy was thermally cycled. The addition of copper to the TiNi alloy played a major role in stabilizing the orthorhombic B19 phases during the phase transitions of Ti50Ni50-xCux alloys. The shifts in the corrosion potential toward the positive zone and the low corrosion current density were affected by the amount of Cu added. The corrosion resistance of the TiNi alloy increased with increasing copper content.

A Corrosion Resistance Evaluation of Welded AISI 304 Stainless Steel by Electrochemical Methods. (전기화학적 방법에 의한 AISI 304 스테인리스강 용접부의 내식성 평가)

  • 백신영;김관휴
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 1990
  • Electrochemical methods have been proposed as non-destructive, rapid and quantitative means for determining the degree of sensitization associated with Chromium depleted zones surrounding precipitates of Cr carbide and formation of secondary phase in stainless steel. In this study, the specimen of AISI 304 stainless steel and its welded sections, which welded by TIG, MIG, $CO_2$ and ARC, were tested corrosion resistance by electrochemical methods in 0.5N HCl and 1N $H_2SO_4$ with or without 0.01N KSCN. The results were confirmed that electrochemical methods could be used as a test method of corrosion resistance evaluation for the welded AISI 304 stainless steel.

  • PDF

Arylamino Substituted Mercaptoimidazole Derivatives as New Corrosion Inhibitors for Carbon Steel in Acidic Media: Experimental and Computational Study

  • Duran, Berrin;Yurttas, Leyla;Duran, Murat
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.365-376
    • /
    • 2021
  • Two arylamino substituted mercaptoimidazole derivatives namely 4,5-dimethyl-1-(phenylamino)-1H-imidazole-2(3H)-thione (I1) and 4,5- dimethyl-1-((p-chlorophenyl)amino)- 1H-imidazole-2(3H)-thione (I2) were synthesized and investigated as corrosion inhibitors for carbon steel in 0.5 M HCl solution by means of electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, ATR-FTIR spectroscopy and SEM. The results showed that the investigated mercaptoimidazole derivatives act as mixed type inhibitors and inhibition efficiency follows the I2>I1 order. Adsorption of inhibitors on metal surface was found to obey the Langmuir adsorption isotherm. Thermodynamic parameters revealed that adsorption of the inhibitors has both physisorption and chemisorption adsorption mechanism. Electrochemical test results were supported by quantum chemical parameters obtained from DFT calculations.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.