• 제목/요약/키워드: Electrochemical Conversion

검색결과 256건 처리시간 0.028초

이산화탄소의 전기화학적 변환 (Electrochemical Conversion of Carbon Dioxide)

  • 송지은;신운섭
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.131-141
    • /
    • 2009
  • 이산화탄소의 유용한 화합물로의 전환은 온실가스 증가로 인한 기후변화에 따른 환경문제의 해결 뿐 아니라 탄소원의 재활용이란 관점에서 무척 중요하다. 그러나 탄소화합물 중 가장 안정된 이산화탄소를 다른 유용한 화합물로 변환시키기 위해서는 에너지가 투입되어야 하고 효과적인 전환을 위하여 촉매의 개발 및 관련된 반응 조건의 확립이 필요하다. 본 총설에서는 그 동안 전기화학적으로 이산화탄소를 변환시킨 연구 내용들을 전극재료, 무기화합물, 효소를 이산화탄소의 환원 촉매로서 이용한 경우로 나누어 전체적으로 살펴보았다. 선택성이 좋고 효율적이며 안정성을 가진 촉매는 아직 개발되지 않은 상황이므로 앞으로 많은 연구가 진행되어야 할 분야이다.

Conversion of a Constant Phase Element to an Equivalent Capacitor

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권3호
    • /
    • pp.318-321
    • /
    • 2020
  • Here I present a formula which converts a constant phase element (CPE) to its equivalent capacitor. Electrochemical impedance spectroscopy is capable of resolving a complex electrochemical processes into its faradaic and non-faradaic elements, and the non-faradaic process is frequently described as a CPE in place of a capacitor due to the non-ideality. Being described as a capacitor, the non-faradaic element provides information by its capacitance, but a CPE cannot provide a physical meaning. In order to solve the problem, the CPE has been dealt with as an equivalent capacitor of which the capacitance provides practical information. Succeeding the two methods previously suggested, a new conversion method is suggested in this report. While the previous ones manipulate only the CPE, the new method takes both the CPE and its related resistor into account for conversion. By comparing the results obtained by the three methods, we learn that the results are nearly the same within tolerable ranges, and conclude that any of the method choices is acceptable depending on the conditions of the system of interest.

아연 전기 도금 강의 환경친화적인 화성처리 기술 개발 (Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel)

  • 김성종;김정일;장석기
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

용융탄산염 전해질에서 이산화탄소의 전기화학적 전환에 전극 재질이 미치는 영향 (Effects of Electrode Material on Electrochemical Conversion of Carbon Dioxide Using Molten Carbonate Electrolyte)

  • 주홍수;엄성용;강기중;최경민;김덕줄
    • 대한기계학회논문집B
    • /
    • 제41권11호
    • /
    • pp.727-734
    • /
    • 2017
  • 이산화탄소의 농도를 줄이는 방법 중 하나로 전기화학을 이용하여 이산화탄소를 고부가 가치인 탄소로 전환하는 연구가 진행 중이다. 본 연구에서는 4.0 V, $600^{\circ}C$의 실험 조건에서 은, 니켈, 백금, 이리듐 전극을 사용하였다. 720분 동안 이산화탄소의 전환을 수행하였으며, 각 전극에서 생성된 탄소는 열중량 분석 및 XRD 분석을 수행하였다. 이산화탄소의 전환 및 생성 탄소의 양은 은, 백금, 니켈, 이리듐으로 나타났다. 열중량 분석을 통해 각 전극에서 생성된 탄소는 유사한 열 반응성을 가지며, XRD 분석을 통해 전극의 반응성에 따라 탄소의 결정성이 달라짐을 확인할 수 있었다. 은 전극은 전기화학적 전환 성능은 가장 높지만 약한 내구성을 보이며, 전극의 반응성 및 내구성을 고려하였을 때 백금이 4개의 재질 중에서 가장 적합함을 확인하였다.

알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가 (Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution)

  • 김명환;이만식;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제44권3호
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.

Applications of Conductive Polymers to Electrochemical Sensors and Energy Conversion Electrodes

  • Kim, Dong-Min;Noh, Hui-Bog;Shim, Yoon-Bo
    • Journal of Electrochemical Science and Technology
    • /
    • 제4권4호
    • /
    • pp.125-139
    • /
    • 2013
  • The electrical conductive polymers (ECPs) reported at my research group are introduced in this review, which works are started from the late Professor Su-Moon Park's pioneering research for polyaniline at the University of New Mexico. The electrochemical and spectroelectrochemical properties and their applications to sensor and energy conversion systems are briefly described. At first, the growth and degradation mechanism of polyaniline describes and we extend to polypyrrole, polyazulene, polydiaminonaphthalenes, and polyterthiophene derivatives. In addition, the preparation of monomer precursors having functional groups is briefly described that can give us many exceptional applications for several chemical reactions. We describe the application of these ECPs for the fabrication of chemical sensors, biosensors, biofuel cells, and solar cells.

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

야금학적으로 Pre-Lithiation된 리튬이온전지 음극용 SiOx의 리튬소스가 미세구조에 미치는 영향 (Effects of Li-Sources on Microstructure of Metallurgically Pre-Lithiated SiOx for Li-Ion Battery's Anode)

  • 이재영;이보라;김낙원;장보윤;김준수;김성수
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.78-85
    • /
    • 2019
  • The effect of various lithium sources such as LiCl, LiOH, and Li-metal on the microstructure and electrochemical properties of granulated $SiO_x$ powders were investigated. Various lithium sources were metallurgically added for a passive pre-lithiation of $SiO_x$ to improve its low initial coulombic efficiency. In spite of using the same amount of Li in various sources, as well as the same process conditions, different lithium silicates were obtained. Moreover, irreversible phases were formed without reduction of $SiO_x$, which might be from additional oxygen incorporation during the process. Accordingly, there were no noticeable electrochemical enhancements. Nevertheless, the $Li_4SiO_4$ phase changes the initial electrochemical reaction, and consequently the relationship between the microstructure and electrochemical properties of metallurgically pre-lithiated $SiO_x$ could provide a guideline for the optimization of the performance of lithium ion batteries.

Synthesis and Physicochemical Properties of Ionic Liquids: 1-Alkenyl-2,3-dimethylimidazolium Tetrafluoroborates

  • Min, Gwan-Hong;Yim, Tae-Eun;Lee, Hyun-Yeong;Kim, Hyo-Jin;Mun, Jun-Young;Kim, Sang-Mi;Oh, Seung-M.;Kim, Young-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권9호
    • /
    • pp.1562-1566
    • /
    • 2007
  • 1-Alkenyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquids having an olefinic substituent were synthesized and characterized. Among them, [AMMIm]BF4 with an allyl group showed lower viscosity, higher ionic conductivity, and a wider electrochemical window compared with its analogue having a saturated alkyl substituent. An EDLC with [AMMIm]BF4 showed better performance than that with [PMMIm]BF4, too.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.