DOI QR코드

DOI QR Code

Electrochemical Conversion of Carbon Dioxide

이산화탄소의 전기화학적 변환

  • Song, Ji-Eun (Department of Chemistry, Interdisciplinary Program of Integrated Biotechnology, and Inorganic and Bio-Materials Center of BK21, Sogang University) ;
  • Shin, Woon-Sup (Department of Chemistry, Interdisciplinary Program of Integrated Biotechnology, and Inorganic and Bio-Materials Center of BK21, Sogang University)
  • 송지은 (서강대학교 화학과, 바이오융합기술 협동과정, BK 무기 및 생체재료사업팀) ;
  • 신운섭 (서강대학교 화학과, 바이오융합기술 협동과정, BK 무기 및 생체재료사업팀)
  • Published : 2009.05.30

Abstract

The conversion of carbon dioxide to value-added compounds has been attracted to solve the environmental problems due to the climate change caused by greenhouse effect in addition to recycle the abundant and renewable carbon source. For utilizing carbon dioxide to useful compounds, the development of catalysts and optimization of experimental conditions are indispensable since carbon dioxide is the most stable one among carbon compounds and the a certain amount of energy is required for the carbon dioxide conversion. The technologies developed for the electrochemical carbon dioxide conversion were reviewed in terms of electrocatalyst which can be electrode material, inorganic complex, and enzyme. This field should be developed further since no good catalyst having selectivity, efficiency, and stability all together.

이산화탄소의 유용한 화합물로의 전환은 온실가스 증가로 인한 기후변화에 따른 환경문제의 해결 뿐 아니라 탄소원의 재활용이란 관점에서 무척 중요하다. 그러나 탄소화합물 중 가장 안정된 이산화탄소를 다른 유용한 화합물로 변환시키기 위해서는 에너지가 투입되어야 하고 효과적인 전환을 위하여 촉매의 개발 및 관련된 반응 조건의 확립이 필요하다. 본 총설에서는 그 동안 전기화학적으로 이산화탄소를 변환시킨 연구 내용들을 전극재료, 무기화합물, 효소를 이산화탄소의 환원 촉매로서 이용한 경우로 나누어 전체적으로 살펴보았다. 선택성이 좋고 효율적이며 안정성을 가진 촉매는 아직 개발되지 않은 상황이므로 앞으로 많은 연구가 진행되어야 할 분야이다.

Keywords

References

  1. IPCC (Inter-governmental Panel on Climate Change) 제4차 보고서 (2007)
  2. Marland, G., T.A. Boden, and R. J. Andres (2003). 'Global, Regional, and National $CO_{2}$ Emissions' in Trends: A Compendium of Data on Global Change. Oak Ridge, Tenn., U.S.A.: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy
  3. Keeling, C.D. and T.P. Whorf (2004). 'Atmospheric $CO_{2}$ records from sites in the SIO air sampling network' in Trends: A Compendium of Data on Global Change. Oak Ridge, Tenn., U.S.A.: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy
  4. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava, 'Advances in $CO_{2}$ capture technology-The U.S. Department of Energy's Carbon Sequestration Program', Int. J. GHG control 2, 9 (2008) https://doi.org/10.1016/S1750-5836(07)00094-1
  5. C. Pevida, M.G. Plaza, B. Arias, J. Fermoso, F. Rubiera, and J.J. Pis, 'Surface modification of activated carbons for $CO_{2}$ capture', App. Surf. Sci., 254, 7165 (2008) https://doi.org/10.1016/j.apsusc.2008.05.239
  6. R. Wang, H.Y. Zhang, P.H.M. Feron, and D.T. Liang, 'Influence of membrane wetting on $CO_{2}$ capture in microporous hollow fiber membrane contactors', Separ. and Purif. Tech., 46, 33 (2005) https://doi.org/10.1016/j.seppur.2005.04.007
  7. D. Daya, R. J. Evansb, J. W. Leec, and D. Reicosky, 'Economical $CO_{2}$, $SO_{X}$, and $NO_{X}$ capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration', Energy, 30, 2558 (2005) https://doi.org/10.1016/j.energy.2004.07.016
  8. O. Bolland and H. Undrum, 'A novel methodology for comparing $CO_{2}$ capture options for natural gas-fired combined cycle plants', Adv. Env. Res., 7, 901 (2003) https://doi.org/10.1016/S1093-0191(02)00085-0
  9. M. J. Choi and D.H. Cho, 'Research Activities on the Utilization of Carbon Dioxide in Korea', Clean, 36, 426 (2008) https://doi.org/10.1002/clen.200700176
  10. K. M. K. Yu, I. Curcic, J. Gabriel, and S. C. E. Tsang, 'Recent Advances in $CO_{2}$ Capture and Utilization', ChemSusChem, 1, 893 (2008) https://doi.org/10.1002/cssc.200800169
  11. K. Fang, D. Li, M. Lin, M. Xiang, W. Wei, and Y. Sun, 'A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas', Catalysis Today, (2009), in press https://doi.org/10.1016/j.cattod.2009.01.038
  12. Istadi and N. A. S. Amin, 'Co-generation of synthesis gas and $C_{2+}$ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review', Fuel, 85, 577 (2006) https://doi.org/10.1016/j.fuel.2005.09.002
  13. Jeffrey C. S. Wu, 'Photocatalytic Reduction of Greenhouse Gas $CO_{2}$ to Fuel', Catal Surv Asia, 13, 30 (2009) https://doi.org/10.1007/s10563-009-9065-9
  14. G. R. Dey, 'Chemical Reduction of $CO_{2}$ to Different Products during Photo Catalytic Reaction on $TiO_{2}$ under DiverseConditions: an Overview', J. Nat. Gas Chem., 16, 217 (2007) https://doi.org/10.1016/S1003-9953(07)60052-8
  15. M. Gattrell, N. Gupta, and A. Co, 'Electrochemical reduction of $CO_{2}$ to hydrocarbons to store renewable electrical energy and upgrade biogas', Energy Conv. Man. 48, 1255 (2007) https://doi.org/10.1016/j.enconman.2006.09.019
  16. E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, 'Electrocatalytic and homogeneous approaches to conversion of $CO_{2}$ to liquid fuels', Chem. Soc. Rev., 38, 89 (2009) https://doi.org/10.1039/b804323j
  17. B. Gao, C. Peng, G. Z. Chen, and G. Li Puma, 'Photoelectro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/$TiO_{2}$) composite prepared by a novel surfactant wrapping sol-gel method', App. Cat. B: Env. 85, 17 (2008) https://doi.org/10.1016/j.apcatb.2008.06.027
  18. O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, 'High-Rate Solar Photocatalytic Conversion of $CO_{2}$ and Water Vapor to Hydrocarbon Fuels', Nano Lett., 9, 731 (2009) https://doi.org/10.1021/nl803258p
  19. K.Y. Koo, H.S. Roh, U. H. Jung, D. J.Seo, Y.S. Seo, and W. L. Yoon, 'Combined $H_{2}O$ and $CO_{2}$ reforming of $CH_{4}$ over nano-sized Ni/MgO-$AI_{2}O_{3}$ catalysts for synthesis gas production for gas to liquid (GTL):Effect of Mg/Al mixed ratio on coke formation', Catalysis Today, (2009), in press https://doi.org/10.1016/j.cattod.2009.02.002
  20. Martin, M. H. 'Chemical Fixation of Carbon Dioxide', 67, CRC Press (1993)
  21. M. Azuma, K. Hoshimoto, M. Hiramoto, M. Watanabe, and T. Sakuta, 'Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low-Temperature Aqueous $KHCO_{3}$ Media', J. Electrochem. Soc., 137, 1772 (1990) https://doi.org/10.1149/1.2086796
  22. D. W. DeWulf, T. Jin, and A. J. Bard, 'Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions', J. Electrochem. Soc., 136, 1686 (1989) https://doi.org/10.1149/1.2096993
  23. K. W. Frese_Jr. and S. Leach, 'Electrochemical Reduction of Carbon Dioxide to Methane, Methanol, and CO on Ru Electrodes', J. Electrochem. Soc., 132, 259 (1985) https://doi.org/10.1149/1.2113780
  24. D.A. Tryk and A. Fujishima, 'Electrochemists enlisted in war', Interface, 32 (2001)
  25. Maria Jitaru, 'ELECTROCHEMICAL CARBON DIOXIDE REDUCTION - FUNDAMENTAL AND APPLIED TOPICS', J. Univ. Chem. Tech. and Metal., 42, 333 (2007)
  26. S. Kaneco, K. Iiba, K. Ohta, T. Mizuno, and A. Saji, 'Electrochemical reduction of $CO_{2}$ at an Ag electrode in KOH-methanol at low temperature', Electrochim. Acta, 44, 573 (1998) https://doi.org/10.1016/S0013-4686(98)00178-9
  27. Y. Hori, K. Kikuchi, and S. Suzuki, 'Production of CO and $CH_{4}$ in electrochemical reduction of $CO_{2}$ at metal electrode in aqueous hydrogencarbonate solution', Chem. lett., 1695 (1985)
  28. Y. Hori, K. Kikuchi, A. Murata, and S. Suzuki, 'Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution', Chem. lett., 897 (1986)
  29. I. Takahashi, O. Koga, N. Hoshi, and Y. Hori, 'Electrochemical reduction of $CO_{2}$ at copper single crystal Cu(S)-[n(111) ${\times}$ (111)] and Cu(S)-[n(110) ${\times}$ (100)] electrodes', J. Electroanal. Chem., 533, 135 (2002) https://doi.org/10.1016/S0022-0728(02)01081-1
  30. Y. Hori, I. Takahashi, O. Koga, and N. Hoshi, 'Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes', J. Mol. Catal. A, 199, 39 (2003) https://doi.org/10.1016/S1381-1169(03)00016-5
  31. H. Shibata and J. A. Moulijn, 'Enabling Electrocatalytic Fischer–Tropsch Synthesis from Carbon Dioxide Over Copper-based Electrodes', Catal Lett, 123, 186 (2008) https://doi.org/10.1007/s10562-008-9488-3
  32. T. Saeki, K. Hashimoto, and A. Fujishima, 'Electrochemical Reduction of $CO_{2}$ with High Current Density in a $CO_{2}$-Methanol Medium', J. Phys. Chem., 99, 8440 (1995) https://doi.org/10.1021/j100020a083
  33. S. Kaneco, K. Ibiza, K. Hiei, K. Ohta, T. Mizuno, and T. Suzuki, 'Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH:methanol', Electrochim. Acta, 44, 4701 (1999) https://doi.org/10.1016/S0013-4686(99)00262-5
  34. H. Yano, T. Tanaka, M. Nakayama, and K. Ogura, 'Selective electrochemical reduction of $CO_{2}$ to ethylene at a three-phase interface on copper(I) halide-confined Cumesh electrodes in acidic solutions of potassium halides', J. Electroanal. Chem., 565, 287 (2004) https://doi.org/10.1016/j.jelechem.2003.10.021
  35. M. Todoroki, K. Hara, A. Kudo, and T. Sakata, 'Electrochemical reduction of high pressure $CO_{2}$ at Pb, Hg and In electrodes in an aqueous $KHCO_{3}$ solution', J. Electroanal. Chem., 394, 199 (1995) https://doi.org/10.1016/0022-0728(95)04010-L
  36. T. Kuniko, T. Fudeko, K. Masahiro, A. Yosho, and A. Makoto, Bull. of the Faculty of Human Env. Sci., 36, 13 (2005)
  37. R. L. Cook, R. C. MacDuff, A. F. Sammells, and U. S. Patent, 4, 897, 167 (1990)
  38. K. Hara, N. Sonoyama, and T. Sakata, 'Eletrocatalytic Fiscer-Tropsch Reactions. Formation of Hydrocarbon and Oxygen-Containing Compounds from CO on a Pt Gas Diffusion Electrode Bull.' Chem. Soc. Jpn., 70, 745 (1997) https://doi.org/10.1246/bcsj.70.745
  39. T. Yamamoto, D. A. Tryk, K. Hashimoto, A. Fujishima, and M, Okawa, 'Electrochemical Reduction of $CO_{2}$ in the Micropores of Activated Carbon Fibers', J. Electrochem. Soc., 147, 3393 (2000) https://doi.org/10.1149/1.1393911
  40. M. Beley, J. P. Collin, R. Ruppert, and J. P. Sauvage, 'Electrocatalytic Reduction of $CO_{2}$ by Ni $Cyclam^{2+}$ in Water: Study of the Factors Affecting the Efficiency and the Selectivity of the Process', J. Am. Chem. Soc., 108, 7461 (1986) https://doi.org/10.1021/ja00284a003
  41. J. P. Collin, A. Jouaiti, and J. P. Sauvage, 'Electrocatalytic Properties of $Ni(cyclam)^{2+}$ and $Ni_{2}(biscyclam)^{4+}$ with Respect to $CO_{2}$ and $H_{2}O$ Reduction', Inorg. Chem., 27, 1986 (1988) https://doi.org/10.1021/ic00284a030
  42. B. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, and T. J. Meyer, 'One- and two-electron pathways in the electrocatalytic reduction of $CO_{2}$ by fac-Re(bpy)$(CO)_{3}$Cl (bpy = 2,2'-bipyridine)', J. Chem. Soc., Chem. Commun, 1414 (1985)
  43. C. M. Bolinger, B. P. Sullivan, D. Conrad, J. A. Gilbert, N. Story, and T. J. Meyer, 'Electrocatalytic reduction of $CO_{2}$ based on polypyridyl complexes of rhodium and ruthenium', J. Chem. Soc., Chem. Commun., 796 (1985)
  44. H. Ishida, K. Tanaka, and T. Tanaka, 'Electrochemical $CO_{2}$ Reduction Catalyzed by $[Ru(bpy)_{2}(CO)_{2}]^{2+}$ and $[Ru(bpy)_{2}(CO)CI]^{+}$. The Effect of pH on the Formation of CO and HCOO-', Organometallics, 6, 181 (1987) https://doi.org/10.1021/om00144a033
  45. C. M. Bolinger, N. Story, B. P. Sullivan, and T. J. Meyer, 'Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium', Inorg. Chem., 27, 4582 (1988) https://doi.org/10.1021/ic00298a016
  46. N. Sonoyama, M. Kirii, and T. Sakata, 'Electrochemical reduction of $CO_{2}$ at metal-porphyrin supported gas diffusion electrodes under high pressure $CO_{2}$', Electrochem. Comm., 213 (1999) https://doi.org/10.1016/S1388-2481(99)00041-7
  47. I. Bhugun, D. Lexa, and J. M. Saveant, 'Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron(0)porphyrin associated with a weak Broensted acid cocatalyst', J. Am. Chem. Soc., 116, 5015 (1994) https://doi.org/10.1021/ja00090a068
  48. K. Sugimura, S. Kuwabata, and H. Yoneyama, 'Electrochemical fixation of carbon dioxide in oxoglutaric acid using an enzyme as an electrocatalyst', J. Am. Chem. Soc., 111, 2361 (1989) https://doi.org/10.1021/ja00188a093
  49. S. Kuwabata, N. Morishita, and H. Yoneyama, 'Electrochemical Fixation of $CO_{2}$ in Acetyl-coenzyme A to Yield Pyruvic Acid Using Pyruvate Dehydrogenase Complexes as an Electrocatalyst', Chem. Lett., 1151 (1990)
  50. S. Kuwabata, R. Tsuda, and H. Yoneyama, 'Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts', J. Am. Chem. Soc., 116, 5437 (1994) https://doi.org/10.1021/ja00091a056
  51. W. Shin, S. H. Lee, J. W. Shin, S. P. Lee, and Y. Kim, 'Highly Selective Electrocatalytic Conversion of $CO_{2}$ to CO at −0.57V (NHE) by Carbon Monoxide Dehydrogenase from Moorella thermoacetica', J. Am. Chem. Soc., 125, 14689 (2003) https://doi.org/10.1021/ja037370i
  52. J. W. Shin, Y. Kim, S. H. Lee, S. P. Lee, M. Lim, J. Song, and W. Shin, 'Effect of pH and Temperature on the Electrochemical Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase', J. Kor. Electrochem. Soc., 265 (2007) https://doi.org/10.5229/JKES.2007.10.4.265
  53. J. W. Shin, Y. Kim, J. Song, S. H. Lee, S. P. Lee, H. Lee, M. Lim, and W. Shin, 'Effect of Electrode Materials and Applied Potential in Electrocatalytic Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase', J. Kor. Electrochem. Soc., 165 (2008) https://doi.org/10.5229/JKES.2008.11.3.165
  54. M. Beley, J. P. Collin, R. Ruppert, and J. P. Sauvage, 'Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of $CO_{2}$ in water', J. Chem. Soc., Chem. Commun., 1984, 1315
  55. I. Bhugun, D. Lexa, and J. M. Savèant, 'Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(0)Porphyrins: Synergystic Effect of Weak Bronsted Acids', J. Am. Chem. Soc., 118, 1769 (1996) https://doi.org/10.1021/ja9534462
  56. Y. Hori, A. Murata, K. Kikuchi, and S. Suzuki, 'Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate', J. Chem. Soc., Chem. Commun., 728 (1987) https://doi.org/10.1039/C39870000728

Cited by

  1. Electrocatalytic Reduction of CO2by Copper (II) Cyclam Derivatives vol.6, pp.3, 2015, https://doi.org/10.5229/JECST.2015.6.3.106