References
- IPCC (Inter-governmental Panel on Climate Change) 제4차 보고서 (2007)
-
Marland, G., T.A. Boden, and R. J. Andres (2003). 'Global, Regional, and National
$CO_{2}$ Emissions' in Trends: A Compendium of Data on Global Change. Oak Ridge, Tenn., U.S.A.: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy -
Keeling, C.D. and T.P. Whorf (2004). 'Atmospheric
$CO_{2}$ records from sites in the SIO air sampling network' in Trends: A Compendium of Data on Global Change. Oak Ridge, Tenn., U.S.A.: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy -
J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava, 'Advances in
$CO_{2}$ capture technology-The U.S. Department of Energy's Carbon Sequestration Program', Int. J. GHG control 2, 9 (2008) https://doi.org/10.1016/S1750-5836(07)00094-1 -
C. Pevida, M.G. Plaza, B. Arias, J. Fermoso, F. Rubiera, and J.J. Pis, 'Surface modification of activated carbons for
$CO_{2}$ capture', App. Surf. Sci., 254, 7165 (2008) https://doi.org/10.1016/j.apsusc.2008.05.239 -
R. Wang, H.Y. Zhang, P.H.M. Feron, and D.T. Liang, 'Influence of membrane wetting on
$CO_{2}$ capture in microporous hollow fiber membrane contactors', Separ. and Purif. Tech., 46, 33 (2005) https://doi.org/10.1016/j.seppur.2005.04.007 -
D. Daya, R. J. Evansb, J. W. Leec, and D. Reicosky, 'Economical
$CO_{2}$ ,$SO_{X}$ , and$NO_{X}$ capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration', Energy, 30, 2558 (2005) https://doi.org/10.1016/j.energy.2004.07.016 -
O. Bolland and H. Undrum, 'A novel methodology for comparing
$CO_{2}$ capture options for natural gas-fired combined cycle plants', Adv. Env. Res., 7, 901 (2003) https://doi.org/10.1016/S1093-0191(02)00085-0 - M. J. Choi and D.H. Cho, 'Research Activities on the Utilization of Carbon Dioxide in Korea', Clean, 36, 426 (2008) https://doi.org/10.1002/clen.200700176
-
K. M. K. Yu, I. Curcic, J. Gabriel, and S. C. E. Tsang, 'Recent Advances in
$CO_{2}$ Capture and Utilization', ChemSusChem, 1, 893 (2008) https://doi.org/10.1002/cssc.200800169 - K. Fang, D. Li, M. Lin, M. Xiang, W. Wei, and Y. Sun, 'A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas', Catalysis Today, (2009), in press https://doi.org/10.1016/j.cattod.2009.01.038
-
Istadi and N. A. S. Amin, 'Co-generation of synthesis gas and
$C_{2+}$ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review', Fuel, 85, 577 (2006) https://doi.org/10.1016/j.fuel.2005.09.002 -
Jeffrey C. S. Wu, 'Photocatalytic Reduction of Greenhouse Gas
$CO_{2}$ to Fuel', Catal Surv Asia, 13, 30 (2009) https://doi.org/10.1007/s10563-009-9065-9 -
G. R. Dey, 'Chemical Reduction of
$CO_{2}$ to Different Products during Photo Catalytic Reaction on$TiO_{2}$ under DiverseConditions: an Overview', J. Nat. Gas Chem., 16, 217 (2007) https://doi.org/10.1016/S1003-9953(07)60052-8 -
M. Gattrell, N. Gupta, and A. Co, 'Electrochemical reduction of
$CO_{2}$ to hydrocarbons to store renewable electrical energy and upgrade biogas', Energy Conv. Man. 48, 1255 (2007) https://doi.org/10.1016/j.enconman.2006.09.019 -
E. E. Benson, C. P. Kubiak, A. J. Sathrum, and J. M. Smieja, 'Electrocatalytic and homogeneous approaches to conversion of
$CO_{2}$ to liquid fuels', Chem. Soc. Rev., 38, 89 (2009) https://doi.org/10.1039/b804323j -
B. Gao, C. Peng, G. Z. Chen, and G. Li Puma, 'Photoelectro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/
$TiO_{2}$ ) composite prepared by a novel surfactant wrapping sol-gel method', App. Cat. B: Env. 85, 17 (2008) https://doi.org/10.1016/j.apcatb.2008.06.027 -
O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, 'High-Rate Solar Photocatalytic Conversion of
$CO_{2}$ and Water Vapor to Hydrocarbon Fuels', Nano Lett., 9, 731 (2009) https://doi.org/10.1021/nl803258p -
K.Y. Koo, H.S. Roh, U. H. Jung, D. J.Seo, Y.S. Seo, and W. L. Yoon, 'Combined
$H_{2}O$ and$CO_{2}$ reforming of$CH_{4}$ over nano-sized Ni/MgO-$AI_{2}O_{3}$ catalysts for synthesis gas production for gas to liquid (GTL):Effect of Mg/Al mixed ratio on coke formation', Catalysis Today, (2009), in press https://doi.org/10.1016/j.cattod.2009.02.002 - Martin, M. H. 'Chemical Fixation of Carbon Dioxide', 67, CRC Press (1993)
-
M. Azuma, K. Hoshimoto, M. Hiramoto, M. Watanabe, and T. Sakuta, 'Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low-Temperature Aqueous
$KHCO_{3}$ Media', J. Electrochem. Soc., 137, 1772 (1990) https://doi.org/10.1149/1.2086796 - D. W. DeWulf, T. Jin, and A. J. Bard, 'Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions', J. Electrochem. Soc., 136, 1686 (1989) https://doi.org/10.1149/1.2096993
- K. W. Frese_Jr. and S. Leach, 'Electrochemical Reduction of Carbon Dioxide to Methane, Methanol, and CO on Ru Electrodes', J. Electrochem. Soc., 132, 259 (1985) https://doi.org/10.1149/1.2113780
- D.A. Tryk and A. Fujishima, 'Electrochemists enlisted in war', Interface, 32 (2001)
- Maria Jitaru, 'ELECTROCHEMICAL CARBON DIOXIDE REDUCTION - FUNDAMENTAL AND APPLIED TOPICS', J. Univ. Chem. Tech. and Metal., 42, 333 (2007)
-
S. Kaneco, K. Iiba, K. Ohta, T. Mizuno, and A. Saji, 'Electrochemical reduction of
$CO_{2}$ at an Ag electrode in KOH-methanol at low temperature', Electrochim. Acta, 44, 573 (1998) https://doi.org/10.1016/S0013-4686(98)00178-9 -
Y. Hori, K. Kikuchi, and S. Suzuki, 'Production of CO and
$CH_{4}$ in electrochemical reduction of$CO_{2}$ at metal electrode in aqueous hydrogencarbonate solution', Chem. lett., 1695 (1985) - Y. Hori, K. Kikuchi, A. Murata, and S. Suzuki, 'Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution', Chem. lett., 897 (1986)
-
I. Takahashi, O. Koga, N. Hoshi, and Y. Hori, 'Electrochemical reduction of
$CO_{2}$ at copper single crystal Cu(S)-[n(111)${\times}$ (111)] and Cu(S)-[n(110)${\times}$ (100)] electrodes', J. Electroanal. Chem., 533, 135 (2002) https://doi.org/10.1016/S0022-0728(02)01081-1 - Y. Hori, I. Takahashi, O. Koga, and N. Hoshi, 'Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes', J. Mol. Catal. A, 199, 39 (2003) https://doi.org/10.1016/S1381-1169(03)00016-5
- H. Shibata and J. A. Moulijn, 'Enabling Electrocatalytic Fischer–Tropsch Synthesis from Carbon Dioxide Over Copper-based Electrodes', Catal Lett, 123, 186 (2008) https://doi.org/10.1007/s10562-008-9488-3
-
T. Saeki, K. Hashimoto, and A. Fujishima, 'Electrochemical Reduction of
$CO_{2}$ with High Current Density in a$CO_{2}$ -Methanol Medium', J. Phys. Chem., 99, 8440 (1995) https://doi.org/10.1021/j100020a083 - S. Kaneco, K. Ibiza, K. Hiei, K. Ohta, T. Mizuno, and T. Suzuki, 'Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH:methanol', Electrochim. Acta, 44, 4701 (1999) https://doi.org/10.1016/S0013-4686(99)00262-5
-
H. Yano, T. Tanaka, M. Nakayama, and K. Ogura, 'Selective electrochemical reduction of
$CO_{2}$ to ethylene at a three-phase interface on copper(I) halide-confined Cumesh electrodes in acidic solutions of potassium halides', J. Electroanal. Chem., 565, 287 (2004) https://doi.org/10.1016/j.jelechem.2003.10.021 -
M. Todoroki, K. Hara, A. Kudo, and T. Sakata, 'Electrochemical reduction of high pressure
$CO_{2}$ at Pb, Hg and In electrodes in an aqueous$KHCO_{3}$ solution', J. Electroanal. Chem., 394, 199 (1995) https://doi.org/10.1016/0022-0728(95)04010-L - T. Kuniko, T. Fudeko, K. Masahiro, A. Yosho, and A. Makoto, Bull. of the Faculty of Human Env. Sci., 36, 13 (2005)
- R. L. Cook, R. C. MacDuff, A. F. Sammells, and U. S. Patent, 4, 897, 167 (1990)
- K. Hara, N. Sonoyama, and T. Sakata, 'Eletrocatalytic Fiscer-Tropsch Reactions. Formation of Hydrocarbon and Oxygen-Containing Compounds from CO on a Pt Gas Diffusion Electrode Bull.' Chem. Soc. Jpn., 70, 745 (1997) https://doi.org/10.1246/bcsj.70.745
-
T. Yamamoto, D. A. Tryk, K. Hashimoto, A. Fujishima, and M, Okawa, 'Electrochemical Reduction of
$CO_{2}$ in the Micropores of Activated Carbon Fibers', J. Electrochem. Soc., 147, 3393 (2000) https://doi.org/10.1149/1.1393911 -
M. Beley, J. P. Collin, R. Ruppert, and J. P. Sauvage, 'Electrocatalytic Reduction of
$CO_{2}$ by Ni$Cyclam^{2+}$ in Water: Study of the Factors Affecting the Efficiency and the Selectivity of the Process', J. Am. Chem. Soc., 108, 7461 (1986) https://doi.org/10.1021/ja00284a003 -
J. P. Collin, A. Jouaiti, and J. P. Sauvage, 'Electrocatalytic Properties of
$Ni(cyclam)^{2+}$ and$Ni_{2}(biscyclam)^{4+}$ with Respect to$CO_{2}$ and$H_{2}O$ Reduction', Inorg. Chem., 27, 1986 (1988) https://doi.org/10.1021/ic00284a030 -
B. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, and T. J. Meyer, 'One- and two-electron pathways in the electrocatalytic reduction of
$CO_{2}$ by fac-Re(bpy)$(CO)_{3}$ Cl (bpy = 2,2'-bipyridine)', J. Chem. Soc., Chem. Commun, 1414 (1985) -
C. M. Bolinger, B. P. Sullivan, D. Conrad, J. A. Gilbert, N. Story, and T. J. Meyer, 'Electrocatalytic reduction of
$CO_{2}$ based on polypyridyl complexes of rhodium and ruthenium', J. Chem. Soc., Chem. Commun., 796 (1985) -
H. Ishida, K. Tanaka, and T. Tanaka, 'Electrochemical
$CO_{2}$ Reduction Catalyzed by$[Ru(bpy)_{2}(CO)_{2}]^{2+}$ and$[Ru(bpy)_{2}(CO)CI]^{+}$ . The Effect of pH on the Formation of CO and HCOO-', Organometallics, 6, 181 (1987) https://doi.org/10.1021/om00144a033 - C. M. Bolinger, N. Story, B. P. Sullivan, and T. J. Meyer, 'Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium', Inorg. Chem., 27, 4582 (1988) https://doi.org/10.1021/ic00298a016
-
N. Sonoyama, M. Kirii, and T. Sakata, 'Electrochemical reduction of
$CO_{2}$ at metal-porphyrin supported gas diffusion electrodes under high pressure$CO_{2}$ ', Electrochem. Comm., 213 (1999) https://doi.org/10.1016/S1388-2481(99)00041-7 - I. Bhugun, D. Lexa, and J. M. Saveant, 'Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron(0)porphyrin associated with a weak Broensted acid cocatalyst', J. Am. Chem. Soc., 116, 5015 (1994) https://doi.org/10.1021/ja00090a068
- K. Sugimura, S. Kuwabata, and H. Yoneyama, 'Electrochemical fixation of carbon dioxide in oxoglutaric acid using an enzyme as an electrocatalyst', J. Am. Chem. Soc., 111, 2361 (1989) https://doi.org/10.1021/ja00188a093
-
S. Kuwabata, N. Morishita, and H. Yoneyama, 'Electrochemical Fixation of
$CO_{2}$ in Acetyl-coenzyme A to Yield Pyruvic Acid Using Pyruvate Dehydrogenase Complexes as an Electrocatalyst', Chem. Lett., 1151 (1990) - S. Kuwabata, R. Tsuda, and H. Yoneyama, 'Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts', J. Am. Chem. Soc., 116, 5437 (1994) https://doi.org/10.1021/ja00091a056
-
W. Shin, S. H. Lee, J. W. Shin, S. P. Lee, and Y. Kim, 'Highly Selective Electrocatalytic Conversion of
$CO_{2}$ to CO at −0.57V (NHE) by Carbon Monoxide Dehydrogenase from Moorella thermoacetica', J. Am. Chem. Soc., 125, 14689 (2003) https://doi.org/10.1021/ja037370i - J. W. Shin, Y. Kim, S. H. Lee, S. P. Lee, M. Lim, J. Song, and W. Shin, 'Effect of pH and Temperature on the Electrochemical Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase', J. Kor. Electrochem. Soc., 265 (2007) https://doi.org/10.5229/JKES.2007.10.4.265
- J. W. Shin, Y. Kim, J. Song, S. H. Lee, S. P. Lee, H. Lee, M. Lim, and W. Shin, 'Effect of Electrode Materials and Applied Potential in Electrocatalytic Reduction of Carbon Dioxide by Carbon Monoxide Dehydrogenase', J. Kor. Electrochem. Soc., 165 (2008) https://doi.org/10.5229/JKES.2008.11.3.165
-
M. Beley, J. P. Collin, R. Ruppert, and J. P. Sauvage, 'Nickel(II)-cyclam: an extremely selective electrocatalyst for reduction of
$CO_{2}$ in water', J. Chem. Soc., Chem. Commun., 1984, 1315 - I. Bhugun, D. Lexa, and J. M. Savèant, 'Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(0)Porphyrins: Synergystic Effect of Weak Bronsted Acids', J. Am. Chem. Soc., 118, 1769 (1996) https://doi.org/10.1021/ja9534462
- Y. Hori, A. Murata, K. Kikuchi, and S. Suzuki, 'Electrochemical reduction of carbon dioxides to carbon monoxide at a gold electrode in aqueous potassium hydrogen carbonate', J. Chem. Soc., Chem. Commun., 728 (1987) https://doi.org/10.1039/C39870000728
Cited by
- Electrocatalytic Reduction of CO2by Copper (II) Cyclam Derivatives vol.6, pp.3, 2015, https://doi.org/10.5229/JECST.2015.6.3.106