• Title/Summary/Keyword: Electrocatalytic

Search Result 220, Processing Time 0.019 seconds

Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles

  • Dutta, Gorachand;Yang, Haesik
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Although the time dependences of the electrocatalytic activities of Pt and Pd nanoparticles during electrochemical operations have been widely studied, the time dependences under nonpolarized conditions have never been investigated in depth. This study reports the changes in the electrocatalytic activities of Pt and Pd nanoparticles with aging in air and in solution. Pt (or Pd) nanoparticle-modified electrodes are obtained by adsorbing citrate-stabilized Pt (or Pd) nanoparticles on amine-modified indium-tin oxide (ITO) electrodes, or by electrodeposition of Pt (or Pd) nanoparticles on ITO electrodes. The electrocatalytic activities of freshly prepared Pt and Pd nanoparticles in the oxygen reduction reaction slowly decrease with aging. The electrocatalytic activities decrease more slowly in solution than in air. An increase in surface contamination may cause electrocatalytic deactivation during aging. The electrocatalytic activities of long-aged Pt (or Pd) nanoparticles are significantly enhanced and recovered by NaBH4 treatment.

Effect of Electrochemical Oxidation-Reduction Cycles on Surface Structures and Electrocatalytic Oxygen Reduction Activity of Au Electrodes

  • Lim, Taejung;Kim, Jongwon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.310-316
    • /
    • 2016
  • Oxidation-reduction cycling (ORC) procedures are widely used for cleaning nanoparticle surfaces when investigating their electrocatalytic activities. In this work, the effect of ORC on the surface structures and electrocatalytic oxygen reduction activity of Au electrodes is analyzed. Different structural changes and variations in electrocatalysis are observed depending on the initial structure of the Au electrodes, such as flat bulk, nanoporous, nanoplate, or dendritic Au. In particular, dendritic Au structures lost their sharp-edge morphology during the ORC process, resulting in a significant decrease in its electrocatalytic oxygen reduction activity. The results shown in this paper provide an insight into the pretreatment of nanoparticle-based electrodes during investigation of their electrocatalytic activities.

Electrocatalytic Reduction of Carbon Dioxide on Sn-Pb Alloy Electrodes

  • Choi, Song Yi;Jeong, Soon Kwan;Park, Ki Tae
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.231-236
    • /
    • 2016
  • Electrocatalytic reduction can produce useful chemicals and fuels such as carbon monoxide, methane, formate, aldehydes, and alcohols using carbon dioxide, the green house gas, as a reactant through the supply of electrical energy. In this study, tin-lead (Sn-Pb) alloy electrodes are fabricated by electrodeposition on a carbon paper with different alloy composition and used as cathode for electrocatalytic reduction of carbon dioxide into formate in an aqueous system. The prepared electrodes are measured by Faradaic efficiency and partial current density for formate production. Electrocatalytic reduction experiments are carried out at -1.8 V (vs. Ag/AgCl) using H-type cell under ambient temperature and pressure and the gas and liquid products are analyzed by gas chromatograph and liquid chromatograph, respectively. As results, the Sn-Pb electrodes show higher Faradaic efficiency and partial current density than the single metal electrode. The Sn-Pb alloy electrode which have Sn:Pb molar ratio=2:1, shows the highest Faradaic efficiency of 88.7%.

Electrocatalytic Activity of Dendritic Platinum Structures Electrodeposited on ITO Electrode Surfaces (전기화학적 석출을 통해 ITO 표면에 형성한 덴드라이트 백금 구조의 전기화학적 촉매 활성)

  • Choi, Suhee;Choi, Kang-Hee;Kim, Jongwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.209-215
    • /
    • 2014
  • We report on the electrocatalytic activities at Pt nanostructure surfaces electrodeposited with different deposition charges on indium tin oxide electrodes for oxygen reduction and methanol oxidation reactions. The surface properties of Pt nanostructures depending on deposition charges were characterized by scanning electron microscopy, electrochemical surface area measurement, X-ray diffraction, and CO stripping analysis, which were correlated to the electrocatalytic activities. Pt nanostructures with deposition charge of 0.03 C exhibited the highest electrocatalytic activity for oxygen reduction and methanol oxidation. The sharp sites of Pt nanostructure and the presence of highly active facet play a key role, whereas the electrochemical surface area does not significantly affect the electrocatalytic activity. The results obtained in this work with regard to the dependence of electrocatalytic activity on the variation of the Pt nanostructures will give insights into the development of advanced electrocatalytic systems.

Effect of Thermal Treatment on the Electrocatalytic Activities and Surface Roughness of ITO Electrodes

  • Choi, Moon-Jeong;Jo, Kyung-Mi;Yang, Hae-Sik
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • The electrocatalytic activities and surface roughness of indium-tin-oxide (ITO) electrodes have been investigated after thermal treatment at 100, 150, or $200^{\circ}C$ for 30 min, 2 h, or 8 h. To check electrocatalytic activities, the electrochemical behavior of four electroactive species (p-hydroquinone, $Ru(NH_3){_6}^{3+}$, ferrocenemethanol, and $Fe(CN){_6}^{4-}$) has been measured. The electron transfer rate for p-hydroquinone oxidation and ferrocenemethanol oxidation increases with increasing the incubation temperature and the incubation period of time, but the rate for $Ru(NH_3){_6}^{3+}$ is similar irrespective of the incubation temperature and period because $Ru(NH_3){_6}^{3+}$ undergoes a fast outer-sphere reaction. Overall, the electrocatalytic activities of ITO electrodes increase with increasing the incubation temperature and period. The surface roughness of ITO electrodes increases with increasing the incubation temperature, and the thermal treatment generates many towering pillars as high as several tens of nanometer.

Electrocatalytic Reduction of Dioxygen by Cobaltporphyrin in Aqueous Solutions

  • 전승원;이효경;김송미
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.825-830
    • /
    • 1998
  • The electrocatalytic reduction of dioxygen by Co(TTFP)(Y)2 {Y=H2O or HO-} is investigated by cyclic voltammetry, spectroelectrochemistry, hydrodynamic voltammetry at a glassy carbon electrode in dioxygen-saturated aqueous solutions. Electrocatalytic reduction of dioxygen by CoⅡ(TTFP)(Y)2 establishes a pathway of 2e- reduction to form hydrogen peroxide, and then the generated hydrogen peroxide is reduced to water by CoⅠ(TTFP)(Y)2 at more negative potential. CoⅡ(TTFP)(Y)2 may bind dioxygen to produce the adduct complex [CoⅡ-O2 or CoⅢ-O2] which exhibits a Soret band at 411 nm and Q band at 531 nm.

Physioelectrochemical Investigation of Electrocatalytic Oxidation of Saccharose on Conductive Polymer Modified Graphite Electrode

  • Naeemy, A.;Ehsani, A.;Jafarian, M.;Moradi, M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.88-94
    • /
    • 2015
  • In this study we investigated the electrocatalytic oxidation of saccharose on conductive polymer- Nickel oxide modified graphite electrodes based on the ability of anionic surfactants to form micelles in aqueous media. This NiO modified electrode showed higher electrocatalytic activity than Ni rode electrode in electrocatalytic oxidation of saccharose. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion controlled process. Under the CA regime the reaction followed a Cottrellian behavior and the diffusion coefficient of saccharose was found in agreement with the values obtained from CV measurements.

Electrocatalytic Properties of Metal-dispersed Carbon Paste Electrodes for Reagentless L-lactate Biosensors (금속이 첨가된 탄소전극의 전기화학적 특성과 이를 이용한 L-lactate 바이오센서의 개발)

  • 윤현철;김학성
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.489-496
    • /
    • 1996
  • Metal dispersed carbon paste electrodes were fabricated, and their electrochemical properties were investigated. Among various metal dispersed carbons, platinum-dispersed carbon paste electrode showed most efficient electrocatalytic characteristics. The overpotential for the oxidation of NADH was significantly lowered in the platinum-dispersed carbon paste electrode, and catalytic current was also enhanced. Based on these electrocatalytic observations, L-lactate biosensor using L-lactate dehydrogenase was constructed to evaluate its performance in terms of sensitivity and stability.

  • PDF

Redox-Active Self-Assembled Monolayer on Au ultramicroelectrode and its Electrocatalytic Detection of p-aminophenol Oxidation

  • Kim, Yun Jee;Kim, Ki Jun;Jung, Seung Yeon;Hwang, You Jin;Kwon, Seong Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.170-176
    • /
    • 2019
  • Alkanethiol self-assembled monolayers (SAMs) and partially ferrocene (Fc) modifications were applied to the Au ultramicroelectrode (UME) rather than to standard sized electrodes with dimension of millimeters. The electron transfer mediation of the SAMs and Fc modified Au UME was investigated by using a p-aminophenol (p-AP) oxidation reaction via cyclic voltammetry. The electrocatalytic p-AP oxidation at the SAMs and Fc modified Au UME showed a much larger electrocatalytic current density than that at the standard sized electrode due to the fast mass transfer rate at the UME.