DOI QR코드

DOI QR Code

Electrocatalytic Activity of Dendritic Platinum Structures Electrodeposited on ITO Electrode Surfaces

전기화학적 석출을 통해 ITO 표면에 형성한 덴드라이트 백금 구조의 전기화학적 촉매 활성

  • Choi, Suhee (Department of Chemistry, Chungbuk National University) ;
  • Choi, Kang-Hee (Department of Chemistry, Chungbuk National University) ;
  • Kim, Jongwon (Department of Chemistry, Chungbuk National University)
  • Received : 2014.08.22
  • Accepted : 2014.09.16
  • Published : 2014.11.28

Abstract

We report on the electrocatalytic activities at Pt nanostructure surfaces electrodeposited with different deposition charges on indium tin oxide electrodes for oxygen reduction and methanol oxidation reactions. The surface properties of Pt nanostructures depending on deposition charges were characterized by scanning electron microscopy, electrochemical surface area measurement, X-ray diffraction, and CO stripping analysis, which were correlated to the electrocatalytic activities. Pt nanostructures with deposition charge of 0.03 C exhibited the highest electrocatalytic activity for oxygen reduction and methanol oxidation. The sharp sites of Pt nanostructure and the presence of highly active facet play a key role, whereas the electrochemical surface area does not significantly affect the electrocatalytic activity. The results obtained in this work with regard to the dependence of electrocatalytic activity on the variation of the Pt nanostructures will give insights into the development of advanced electrocatalytic systems.

전기화학적 석출 방법을 이용하여 indium tin oxide 표면에 백금 나노구조를 형성하고 총 석출전하량을 조절하여 형성되는 나노구조의 변화에 따른 전기화학적 메탄올 산화 반응과 산소 환원반응에 대한 촉매 활성의 변화를 관찰하였다. 석출 전하량의 변화에 따라 생성되는 백금 나노구조체 표면의 특성을 주사 전자 현미경, 전기화학적 표면적 측정, X-선 회절법, 일산화탄소 벗김분석을 통해 규명하고 전기화학적 촉매 활성과의 연계성을 조사하였다. 전기화학적 촉매 활성은 형성된 백금 나노구조에 따라 달라지는데, 석출 전하량 $0.45C\;cm^{-2}$에 해당하는 백금 나노구조에서 가장 우수한 촉매 활성이 관찰되었다. 전하량에 따른 표면적의 변화보다 형성된 구조적 특이성과 결정면이 촉매 활성에 많은 영향을 미쳤다. 세밀한 백금 나노구조의 변화에 따른 전기화학적 촉매 활성 변화에 관한 본 연구결과는 보다 우수한 촉매 시스템을 고안하는 연구에 도움이 될 것이다.

Keywords

References

  1. A. C. Chen and P. Holt-Hindle, 'Platinum-based nanostructured materials: Synthesis, properties, and applications' Chem. Rev., 110, 3767 (2010). https://doi.org/10.1021/cr9003902
  2. W. Ye, J. Liu, Q. Liu, F. Zhou, and W. Liu, 'Surfactantfree and controllable synthesis of hierarchical platinum nanostructures and their comparative studies in electrocatalysis, surface-enhanced raman scattering and surface wettability' Electrochim. Acta, 55, 8649 (2010). https://doi.org/10.1016/j.electacta.2010.07.075
  3. J. H. Shim, Y. S. Kim, M. Kang, C. Lee, and Y. Lee, 'Electrocatalytic activity of nanoporous Pd and Pt: Effect of structural features' Phys. Chem. Chem. Phys., 14, 3974 (2012). https://doi.org/10.1039/c2cp23429g
  4. Y. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, and C. Cai, 'Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation' Phys. Chem. Chem. Phys., 13, 4083 (2011). https://doi.org/10.1039/c0cp01998d
  5. J. N. Tiwari, F.-M. Pan, and K.-L. Lin, 'Facile approach to the synthesis of 3d platinum nanoflowers and their electrochemical characteristics' New J. Chem, 33, 1482 (2009). https://doi.org/10.1039/b901534p
  6. Y. Li, T. Bian, J. Du, Y. Xiong, F. Zhan, H. Zhang, and D. Yang, 'Facile synthesis of high-quality Pt nanostructures with a controlled aspect ratio for methanol electro-oxidation' CrystEngComm, (2014).
  7. Y. Ye, J. Joo, B. Lim, and J. Lee, 'Simple synthesis of platinum dendritic aggregates supported on conductive tungsten oxide nanowires as high-performance methanol oxidation electrocatalysts' Chem. Eur. J., 18, 2797 (2012). https://doi.org/10.1002/chem.201103720
  8. S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, 'Electrochemistry of nanoparticles' Angew. Chem. Int. Ed., 53, 3558 (2014). https://doi.org/10.1002/anie.201306828
  9. X. Peng, K. Koczkur, S. Nigro, and A. Chen, 'Fabrication and electrochemical properties of novel nanoporous platinum network electrodes' Chem. Commun., 2872 (2004).
  10. H. Zhang, W. Zhou, Y. Du, P. Yang, and C. Wang, 'Onestep electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electrooxidation' Electrochem. Commun., 12, 882 (2010). https://doi.org/10.1016/j.elecom.2010.04.011
  11. Y. B. He, G. R. Li, Z. L. Wang, Y. N. Ou, and Y. X. Tong, 'Pt nanorods aggregates with enhanced electrocatalytic activity toward methanol oxidation' J. Phys. Chem. C, 114, 19175 (2010). https://doi.org/10.1021/jp104991k
  12. M. Zhang, J.-J. Lv, F.-F. Li, N. Bao, A.-J. Wang, J.-J. Feng, and D.-L. Zhou, 'Urea assisted electrochemical synthesis of flower-like platinum arrays with high electroc-atalytic activity' Electrochim. Acta, 123, 227 (2014). https://doi.org/10.1016/j.electacta.2014.01.054
  13. S. TRASATTI and O. A. PETRII, 'Real surface-area measurements in electrochemistry' Pure Appl. Chem., 63, 711 (1991).
  14. J. Liu, X. Wang, Z. Lin, Y. Cao, Z. Zheng, Z. Zeng, and Z. Hu, 'Shape-controllable pulse electrodeposition of ultrafine platinum nanodendrites for methanol catalytic combustion and the investigation of their local electric field intensification by electrostatic force microscope and finite element method' Electrochim. Acta, 136, 66 (2014). https://doi.org/10.1016/j.electacta.2014.05.082
  15. J. Liu, C. Zhong, X. Du, Y. Wu, P. Xu, J. Liu, and W. Hu, 'Pulsed electrodeposition of Pt particles on indium tin oxide substrates and their electrocatalytic properties for methanol oxidation' Electrochim. Acta, 100, 164 (2013). https://doi.org/10.1016/j.electacta.2013.03.152
  16. E. Herrero, K. Franaszczuk, and A. Wieckowski, 'Electrochemistry of methanol at low index crystal planes of platinum: An integrated voltammetric and chronoamperometric study' J. Phys. Chem., 98, 5074 (1994). https://doi.org/10.1021/j100070a022
  17. J. W. Hong, D. Kim, Y. W. Lee, M. Kim, S. W. Kang, and S. W. Han, 'Atomic-distribution-dependent electrocatalytic activity of Au-Pd bimetallic nanocrystals' Angew. Chem. Int. Ed., 50, 8876 (2011). https://doi.org/10.1002/anie.201102578
  18. M. Shao, 'Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions' J. Power Sources, 196, 2433 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.093