DOI QR코드

DOI QR Code

Voltammetric Determination of Clenbuterol on Electrochemically Activated Glassy Carbon Electrode

전기 화학적으로 활성화된 glassy carbon 전극에서의 전압-전류 법을 이용한 Clenbuterol 측정

  • Lee, Sohee (Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Piao, Yuanzhe (Graduate School of Convergence Science and Technology, Seoul National University)
  • 이소희 (서울대학교 융합과학기술대학원) ;
  • 박원철 (서울대학교 융합과학기술대학원)
  • Received : 2014.09.03
  • Accepted : 2014.09.29
  • Published : 2014.11.28

Abstract

A rapid and sensitive voltammetric method for the quantitative determination of Clenbuterol on electrochemically activated glassy carbon electrode has been developed. Using differential pulse voltammetry, the linear response range for the clenbuterol was between $1{\times}10^{-7}$ and $2{\times}10^{-5}M$, and the detection limit was $6{\times}10^{-9}M$ (S/N = 3). The relative standard derivation was 4.3% for $1{\times}10^{-6}M$ clenbuterol. Recoveries of 96% of the clenbuterol (n = 3) were obtained from urine spiked with different amounts in the ranges $5{\times}10^{-7}M$ and $1{\times}10^{-6}M$ by this method.

전기 화학적으로 활성화된 glassy carbon 전극을 사용하여 Clenbuterol 의 정량측정을 위해 신속하고 민감한 전압-전류 법을 개발하였다. 시차 펄스 전압-전류 법(Differential pulse voltammetry)을 이용하여, Clenbuterol에 대해 $1{\times}10^{-7}M$에서 $2{\times}10^{-5}M$의 범위에서 선형적인 반응을 보였으며 검출한계는 $6{\times}10^{-9}M$ (S/N = 3)이었다. Clenbuterol 의 농도가 $1{\times}10^{-6}M$에서의 상대표준편차는 4.3%이었다. 다양한 양의Clenbuterol이 포함된 소변 샘플로부터 96%의 회수율을 나타냈다. (N = 3, $5{\times}10^{-7}M$에서 $1{\times}10^{-6}M$의 Clenbuterol)

Keywords

References

  1. A. R. Barry and M. M. Graham, J. Cardiol. Cases, 2013, 8, 131. https://doi.org/10.1016/j.jccase.2013.07.004
  2. P. Gustin, M. Ansay and G. Maghuin-Rogister, Ann. Med. Ve., 1988, 62, 371.
  3. G. Van Vyncht, S. Preece, P. Gaspar, G. Maghuin-Rogister and E. Depauw, J. Chromatogr., 1996, 750, 43. https://doi.org/10.1016/0021-9673(96)00540-7
  4. H. H. D. Meyer, L. Rinke and I. Dursch, J. Chromatogr., 1991, 564, 551. https://doi.org/10.1016/0378-4347(91)80523-F
  5. J. Girault and J.B. Fourtillan, J. Chromatogr., 1990, 518, 4.
  6. B. A. Rashida, P. Kwasowskib and D. Stevenson, J. Pharm. Biomed. Anal., 1999, 21, 635. https://doi.org/10.1016/S0731-7085(99)00165-X
  7. P. Gonzaleza, C. A. Fenteb, C. Francoc, B. Vazquezc, E. Quintoc and A. Cepedac, J. Chromatogr. B, 1997, 693, 321 https://doi.org/10.1016/S0378-4347(97)00070-4
  8. C. Lopez-Erroz, P. Vinas, F. J. Cerdan and M. Hernandez-Cordoba, Talanta, 2000, 53, 47. https://doi.org/10.1016/S0039-9140(00)00381-7
  9. M. Hernandez-Carrasquilla, Anal. Chim. Acta, 2000, 408, 285 https://doi.org/10.1016/S0003-2670(99)00808-9
  10. L. X. Whaites and E. J. Murby, J. Chromatogr. B, 1999, 728, 67. https://doi.org/10.1016/S0378-4347(99)00096-1
  11. C. Gausepohl and G. Blaschke, J. Chromatogr. B, 1998, 713, 443. https://doi.org/10.1016/S0378-4347(98)00178-9
  12. A. Gleixner.; H. Sauerwein; H. H. D. Meyer, Clinical Chemistry, 1996, 42, 1869.
  13. A. Polettini, G. M. Bouland, and M. Montagna, Anal. Chem., 1998, 70, 1362. https://doi.org/10.1021/ac971030w
  14. G. A. Qureshi and A. Eriksson, J. Chromatogr., 1988, 441, 197. https://doi.org/10.1016/S0021-9673(01)84666-5
  15. S. Moanea, J. B. Rodrigueza, A. J. M. Ordieresa, P. T. Blancoa and M. R. Smyth, J. Pharm. Biomed. Anal., 1995, 14, 57. https://doi.org/10.1016/0731-7085(95)01610-4
  16. S. Moanea, M. R. Smyth and M. O'Keeffe, Analyst, 1996, 121, 779. https://doi.org/10.1039/an9962100779
  17. T. Nagaoka, T. Yoshino, Anal. Chem. ,1986, 58, 1037. https://doi.org/10.1021/ac00297a012
  18. A. L. Beilby, T. A. Sasaki, H MStern, Anal. Chem., 1995, 67, 976. https://doi.org/10.1021/ac00101a027
  19. K. Shi, K. K. Shiu, Anal. Chem., 2002, 74, 879. https://doi.org/10.1021/ac010734+
  20. Z. N. Zhang, C. H. Lei, W. L. Sun, H. Y. Liu, J. Q. Deng, J. Electroanal. Chem., 1996, 419, 85. https://doi.org/10.1016/S0022-0728(96)04873-5
  21. R. L. McCreery, Electroanalytical Chemistry, 1991, 17, 221.
  22. K. K. Shiu, F. Y. Song, Electroanalysis, 1998, 10, 256. https://doi.org/10.1002/(SICI)1521-4109(199804)10:4<256::AID-ELAN256>3.0.CO;2-K
  23. M. L. Bowers, B. A. Yenser, Anal. Chim. Acta, 1991, 243, 43. https://doi.org/10.1016/S0003-2670(00)82538-6
  24. K. K. Shiu and K. Shi, Electroanalysis, 2000, 12, 134. https://doi.org/10.1002/(SICI)1521-4109(200002)12:2<134::AID-ELAN134>3.0.CO;2-V
  25. Y, Kong, X. Chen, C. Yao, M. Ma and Z. Chen, Anal. Methods, 2011, 3, 2121 https://doi.org/10.1039/c1ay05331k
  26. G. A. Qureshi and A. Eriksson, J. Chromatogr., 1988, 441, 197. https://doi.org/10.1016/S0021-9673(01)84666-5
  27. J.Bai, Y. J. Lai, D. W. Jiang, Y. B. Zeng, Y. Z. Xian, F. Xiao, N. D. Zhang, J. Hou, L. T. Jin, Analyst 2012, 137, 4349. https://doi.org/10.1039/c2an35473j
  28. B. Bo, X. J. Zhu, P. Miao, D. Pei, B. Jiang, Y. Lou, Y. Q. Shu, G. X. Li, Talanta, 2013, 113, 36. https://doi.org/10.1016/j.talanta.2013.03.056
  29. R. R. Gaichore, A. K. Srivastava, J. Appl. Electrochem., 2012, 42, 979. https://doi.org/10.1007/s10800-012-0466-5
  30. P. Mial, K. Han, H. Sun, J. Yin, J. Zhao, B. Wang, Y. Tang, ACS Appl. Mater. Interfaces, 2014, 6, 8667. https://doi.org/10.1021/am501473m
  31. S. Collins, M. O'keeffe and M. R. Smyth, Analyst, 1994, 119, 2671. https://doi.org/10.1039/an9941902671