DOI QR코드

DOI QR Code

Effect of Thermal Treatment on the Electrocatalytic Activities and Surface Roughness of ITO Electrodes

  • Choi, Moon-Jeong (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Jo, Kyung-Mi (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Yang, Hae-Sik (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
  • Received : 2012.02.06
  • Accepted : 2012.03.02
  • Published : 2012.03.30

Abstract

The electrocatalytic activities and surface roughness of indium-tin-oxide (ITO) electrodes have been investigated after thermal treatment at 100, 150, or $200^{\circ}C$ for 30 min, 2 h, or 8 h. To check electrocatalytic activities, the electrochemical behavior of four electroactive species (p-hydroquinone, $Ru(NH_3){_6}^{3+}$, ferrocenemethanol, and $Fe(CN){_6}^{4-}$) has been measured. The electron transfer rate for p-hydroquinone oxidation and ferrocenemethanol oxidation increases with increasing the incubation temperature and the incubation period of time, but the rate for $Ru(NH_3){_6}^{3+}$ is similar irrespective of the incubation temperature and period because $Ru(NH_3){_6}^{3+}$ undergoes a fast outer-sphere reaction. Overall, the electrocatalytic activities of ITO electrodes increase with increasing the incubation temperature and period. The surface roughness of ITO electrodes increases with increasing the incubation temperature, and the thermal treatment generates many towering pillars as high as several tens of nanometer.

Keywords

References

  1. J. Das, K. Jo, J. W. Lee and H. Yang, Anal. Chem., 79, 2790 (2007). https://doi.org/10.1021/ac062291l
  2. M. R. Akanda, Y.-L. Choe and H. Yang, Anal. Chem., 84, 1049 (2012). https://doi.org/10.1021/ac202638y
  3. H.-Y. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur and H. Morkoc, Superlatt. Microstruc., 48, 458 (2010). https://doi.org/10.1016/j.spmi.2010.08.011
  4. A. N. Asanov, W. W. Wilson and P. B. Oldham, Anal. Chem., 70, 1156 (1998). https://doi.org/10.1021/ac970805y
  5. I. Zudans, J. R. Paddock, H. Kuramitz, A. T. Maghasi, C. M. Wansapura, S. D. Conklin, N. Kaval, T. Shtoyko, D. J. Monk, S. A. Bryan, T. L. Hubler, J. N. Richardson, C. J. Seliskar and W. R. Heineman, J. Electroanal. Chem., 565, 311 (2004). https://doi.org/10.1016/j.jelechem.2003.10.025
  6. S.-G. Sun, W.-B. Cai, L.-J. Wan and M. Osawa, J. Phys. Chem. B, 103, 2460 (1999).
  7. L. D. Burke, L. M. Hurley, V. E. Lodge and M. B. Mooney, J. Solid State Electrochem., 5, 250 (2001). https://doi.org/10.1007/s100080000152
  8. N. V. Krstajic, L. M. Vracar, V. R. Radmilovic, S. G. Neophytides, M. Labou, J. M. Jaksic, R. Tunold, P. Falaras and M. M. Jaksic, Surf. Sci., 601, 1949 (2007). https://doi.org/10.1016/j.susc.2007.02.019
  9. R. C. Orellana, M. E. Martins and A. J. Arvía, Electrochim. Acta, 24, 469 (1979). https://doi.org/10.1016/0013-4686(79)87037-1
  10. V. Bhalla, S. Carrara, C. Stagni and B. Samorì, Thin Solid Films, 518, 3360 (2010). https://doi.org/10.1016/j.tsf.2009.10.022
  11. J. Kang and P. A. Rowntree, Langmuir, 23, 509 (2007). https://doi.org/10.1021/la0518804
  12. R. L. McCreery, Chem. Rev., 108, 2646 (2008). https://doi.org/10.1021/cr068076m
  13. M. Panizza and G. Cerisola, Electrochim. Acta, 51, 191 (2005). https://doi.org/10.1016/j.electacta.2005.04.023
  14. S. Gardonio, L. Gregoratti, D. Scaini, C. Castellarin- Cudia, P. Dudin, P. Melpignano, V. Biondo, R. Zamboni, S. Caria and M. Kiskinova, Org. Electron., 9, 253 (2008). https://doi.org/10.1016/j.orgel.2007.12.002
  15. C. Haensch, S. Hoeppener and U. S. Schubert, Chem. Soc. Rev. 39, 2323 (2010). https://doi.org/10.1039/b920491a
  16. A. M. Nowicka, U. Hasse, G. Sievers, M. Donten, Z. Stojek, S. Fletcher and F. Scholz, Angew. Chem. Int. Ed., 49, 3006 (2010). https://doi.org/10.1002/anie.201000485
  17. P. Chen and R. L. McCreery, Anal. Chem., 68, 3958 (1996). https://doi.org/10.1021/ac960492r
  18. K. Jo, H.-Z. Yu and H. Yang, Electrochim. Acta, 56, 4828 (2011). https://doi.org/10.1016/j.electacta.2011.03.021

Cited by

  1. A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System vol.3, pp.4, 2012, https://doi.org/10.5229/JECST.2012.3.4.154
  2. A highly sensitive and simply operated protease sensor toward point-of-care testing vol.141, pp.8, 2016, https://doi.org/10.1039/C6AN00251J
  3. Pretreatment of ITO electrode and its physiochemical properties: Towards device fabrication vol.52, pp.6, 2016, https://doi.org/10.3103/S1068375516060090
  4. Effect of Different Pretreatments on Indium-Tin Oxide Electrodes vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.421