DOI QR코드

DOI QR Code

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan (Department of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Christy, Maria (R&D Education Center for Fuel Cell Materials & Systems, Chonbuk National University) ;
  • Hwang, Yun-Ju (R&D Education Center for Fuel Cell Materials & Systems, Chonbuk National University) ;
  • Nahm, Kee-Suk (Department of Semiconductor and Chemical Engineering, Chonbuk National University)
  • Received : 2012.03.03
  • Accepted : 2012.03.27
  • Published : 2012.03.30

Abstract

Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.

Keywords

References

  1. K. M. Abraham, and Z. Jiang, J. Electrochem. Soc.,143, 1(1996). https://doi.org/10.1149/1.1836378
  2. J. Read, J. Electrochem. Soc., 149, A1190 (2002). https://doi.org/10.1149/1.1498256
  3. J. A. Zhang, W. Xu, X. H. Li, and W. Liu, J. Electrochem. Soc., 157 , A940 (2010). https://doi.org/10.1149/1.3430093
  4. J. G. Zhang, D. Y. Wang, W. Xu, J. Xiao, and R. E. Williford, J. Power Sources, 195 , 433 (2010).
  5. D. Vasudevan, and H. Wendt, J Electroanal. Chem. 392, 69 (1995). https://doi.org/10.1016/0022-0728(95)04044-O
  6. D. L. Maricle, and W. G. Hodgson, Anal Chem 37, 1562 (1965). https://doi.org/10.1021/ac60231a027
  7. M. E. Peover, and B. S. White, Chem Commun 183(1965).
  8. C. O. Laoire, S. Mukerjee, K. M. Abraham, E. J. Plichta, and M. A. Hendrickson, J Phys Chem C 114, 9178 (2010). https://doi.org/10.1021/jp102019y
  9. Z. Peng, S. A. Freunberger, L. J. Hardwick, Y. Chen, V. Giordani, F. Bard, P. Novk, D. Graham, J. M. Tarascon, and P. G. Bruce, Angew Chem Int Ed, 50 6351(2011). https://doi.org/10.1002/anie.201100879
  10. I. Kowalczk, J. Read, and M. Salomon, Pure Appl. Chem., 79(5), 851(2007). https://doi.org/10.1351/pac200779050851
  11. B. Meyer, M. Salomon, and D. Foster. Electrospun Membranes for Li-Ion Batteries, Abstract 119, presented at the 209th meeting of the Electrochemical Society, Denver, CO, 7-12 May (2006).
  12. MaxPower program on Ambient Temperature Li-Based Reserve Batteries, U.S. Army Contract $N^{o}$. W911QX-05- C-011.
  13. J. Fu, U.S. Patent 6, 485, 622, November 26, (2002)
  14. Alupower, Inc. Electrochemical Cathode and Materials Therefore, U.S. Patent 5,053,375, October 1, (1991.)
  15. S. Hasegawa, N. Imanishi, T. Zhang, J. Xie, A. Hirano, Y. Takeda, and O. Yamamoto, J. Power Sources, 189, 371 (2009). https://doi.org/10.1016/j.jpowsour.2008.08.009
  16. T. Zhang, N. Imanishi, S. Hasegavwa, A. Hirano, J. Xie, Y. Takeda, O. Yamamoto, and N. Sammes, J. Electrochem. Soc., 155, A965 (2008). https://doi.org/10.1149/1.2990717
  17. D. Zhang, R. Li, T. Huang, and A. Yu, J. Power Sources 195, 1202 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.063
  18. Y. C. Lu, H. A. Gasteiger, M. C. Parent, V. Chiloyan, Y. Shao-Horn, Electrochem.Solid-State Lett., 13, A69 (2010). https://doi.org/10.1149/1.3363047
  19. J. Read, J. Electrochem. Soc., 153(1), A96 (2006). https://doi.org/10.1149/1.2131827
  20. T. Ogasawara, A. Debart, M. Holzapfel, P. Novakand, and P. G. Bruce, J. Am. Chem. Soc., 128, 1390 (2006). https://doi.org/10.1021/ja056811q
  21. S. J. Visco, and Y. S. Nimon, US Patent, 7, 645, 543 (2010).
  22. Y. Wang, and H. Zhou, J. Power Sources, 195, 358 (2010). https://doi.org/10.1016/j.jpowsour.2009.06.109
  23. B. Kumar, J. Kumar, R. Leese, J. P. Fellner, S. J. Rodrigues, and K. M. Abraham, J. Electrochem. Soc., 157(1), A50 (2010). https://doi.org/10.1149/1.3256129
  24. S. Rajendran, and T. Uma, Mater. Lett. 44, 208 (2000). https://doi.org/10.1016/S0167-577X(00)00029-X
  25. S. Rajendran, P. Sivakumar, R.S. BABU Bull. Mater. Sci., 29(7), 673 (2006).
  26. R. C. Agrawal, and G. P. Pandey, J. Phys. D: Appl. Phys. 41, 223001(2008). https://doi.org/10.1088/0022-3727/41/22/223001
  27. G. Y. Aleshin, D. A. Semenenko, A. I. Belova, T. K. Zakharchenko, D. M. Itkis, E. A. Goodilin, and Y. D. retyakov, Solid State Ionics, 184(1), 62 (2011). https://doi.org/10.1016/j.ssi.2010.09.018
  28. H. Ota, K. Shima, M. Ue, and J-ichi Yamaki Electrochimica Acta, 49, 565 (2004). https://doi.org/10.1016/j.electacta.2003.09.010
  29. A. A. Arie, and J. K. Lee, Diamond & Related Materials, 20, 403 (2011).
  30. S. J. Visco, and Y. S. Nimon, U.S. Patent, 7, 282, 295 (2007).
  31. M. Ishikawa, S. Machino, M. Morita, J. Electroanal. Chem., 473, 279 (1999). https://doi.org/10.1016/S0022-0728(99)00170-9
  32. S. Shiraishi, K. Kanamura, and Z. I. Takehara, J. Appl. Electrochem., 29, 869 (1999).
  33. K. Kanamura , H. Tomura , S. Shiraishi , Z. I. Takehara , J. Electrochem. Soc., 142, 340 (1995). https://doi.org/10.1149/1.2044000
  34. T. Osaka, M. kitahara, Y. Uchida, T. Momma, K. Nishimura, J. Power Sources, 81-82, 734 (1999). https://doi.org/10.1016/S0378-7753(99)00143-3
  35. S. S. Zhang, K. Xu, and J. Read, J. Power Sources, 196, 3906 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.092
  36. N. S. Choi, Y. M. Lee, W. Seol, J. A. Lee, and J. K. Park, Solid State Ionics, 172, 19 (2004). https://doi.org/10.1016/j.ssi.2004.05.008
  37. N. S. Choi, Y. M. Lee, K. Y. Cho, D. H. Ko, and J. K. Park, Electrochem. Comm., 6, 1238 (2004). https://doi.org/10.1016/j.elecom.2004.09.023
  38. X. Liu, M. Zheng, and K. Xie, J. Power Sources 196, 10667 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.072
  39. S. D. Beattle, D. M. Manolescu, and S. Blair, J. Electrochem. Soc. 156(1), A44 (2009). https://doi.org/10.1149/1.3005989
  40. M. Wang, Y. Yang, and Y. Zhang, Nanoscale, 3, 4434 (2011). https://doi.org/10.1039/c1nr10950b
  41. S. Yang, X. Wang, X. Yang, Z. Liu, Q. Wei, and H. Shu, International Journal of Electrochemistry, 2012, Article ID 323560, 9 (2012).
  42. Z. Chen, D. J. Lee, Y. K. Sun, and K. Amine, MRS Bulletin, 36, 498 (2011). https://doi.org/10.1557/mrs.2011.155
  43. P. Kichambare, J. Kumar, S. Rodrigues, and B. Kumar, J. Power Sources, 196, 3310 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.112
  44. X. H. Yang, P. He, and Y. Y. Xia, Electrochem. Comm., 11, 1127 (2009). https://doi.org/10.1016/j.elecom.2009.03.029
  45. J. Xiao, D. Wang, W. Xu, D. Wang, R. E. Williford, J. Liu, and J.G.Zhang, J.Electrochem. Soc., 157 (4), A487 (2010). https://doi.org/10.1149/1.3314375
  46. G. Q. Zhang, J. P. Zheng, R. Liang, C. Zhang, B. Wang, M. Hendrickson, and E. J. Plichtae, J. Electrochem. Soc., 157(8), A953 (2010). https://doi.org/10.1149/1.3446852
  47. J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, and D. Foster, J. Electrochem. Soc. 150, A1351 (2003). https://doi.org/10.1149/1.1606454
  48. X. H Yang and Y. Y Xia, Solid State Electrochem., 14, 109 (2010). https://doi.org/10.1007/s10008-009-0791-8
  49. C. Tran, X. Q Yang, and D. Qu, J. Power Sources, 195 2057 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.012
  50. W. Xu, J. Xiao, D. Wang, J. Zhang and J. G. Zhang, J. Electrochem. Soc., 157(2), A219 (2010). https://doi.org/10.1149/1.3269928
  51. S. S. Zhang, Journal of Power Sources, 196, 2867 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.021
  52. W. Xu, V. V. Viswanathan, D. Wang, S. A. Towne, J. Xiao, Z. Nie, D. Hu, and J. G. Zhang, J. Power Sources, 196, 3894 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.065
  53. J. Xiao, J. Hu, D. Wang, D. Hu, W.Xu, G. L. Graff, Z. Nie, J. Liu, and J. G. Zhang, J. Power Sources, 196, 5674 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.060
  54. T. Kuboki, T. Okuyama, T. Ohsaki, and N. Takami, J.Power Sources, 146, 766 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.082
  55. P. Kichambare, J. Kumar, S. Rodrigues, and B. Kumar, J. Power Sources, 196(6), 3310 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.112
  56. J. W. Fergus, J. Power Sources, 195, 4554 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.076
  57. D. Zhang, R. Li, T. Huang, and A.Yu, J. Power Sources, 195, 1202 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.063
  58. H. P. Zhang, P. Zhang, G. C. Li, Y. P. Wu, and D. L. Sun, J. Power Sources, 189(1), 594 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.100
  59. P. Bonhote, P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gratzel, Inorg. Chem., 35, 1168(1996). https://doi.org/10.1021/ic951325x
  60. X. Ren, S. S. Zhang, D. T. Tran, and J. Read, J. Mater. Chem., 21, 10118 (2011). https://doi.org/10.1039/c0jm04170j
  61. A. Debart, A. J. Paterson, J. Bao, and P. G. Bruce, Angew Chem Int Ed Engl., 47(24) 4521 (2008). https://doi.org/10.1002/anie.200705648
  62. Y. Shao, S. Park, J. Xiao, J. G. Zhang, Y. Wang, and J. Liu, ACS Catal., 2, 844 (2012). https://doi.org/10.1021/cs300036v
  63. A. K.Thapa, K. Saimen, and T. Ishihara, Electrochem. Solid-State Letters, 13 (11) A165 (2010).
  64. A. K. Thapa and T. Ishihara, J.Power Sources, 196 7016 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.112
  65. G. Q. Zhang, J. P. Zheng, R. Liang, C. Zhang, B. Wang, M. Au, M. Hendrickson, and E. J. Plichta, J. Electrochem Soc., 158 (7), A822 (2011) https://doi.org/10.1149/1.3590736
  66. A. Débart, A. J. Paterson, J. Bao, and P. G. Bruce, Angew. Chem., 120, 4597 (2008). https://doi.org/10.1002/ange.200705648
  67. Y. C. Lu, Z. Xu, H. A. Gasteiger, S. Chen, K. H. Schifferli, and Y.S.Horn, J. AM. CHEM. SOC., 132, 12170 (2010). https://doi.org/10.1021/ja1036572
  68. A. Débart, J. Bao, G. Armstrong, and P. G. Bruce, J. Power Sources, 174, 1177 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.180

Cited by

  1. Carbon Sphere/Fe3O4Nanocomposite for Li/air Batteries vol.17, pp.2, 2014, https://doi.org/10.5229/JKES.2014.17.2.124
  2. Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries vol.278, 2015, https://doi.org/10.1016/j.jpowsour.2014.12.078
  3. Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries vol.182, 2015, https://doi.org/10.1016/j.electacta.2015.09.100
  4. Ketjen black/Co3O4 nanocomposite prepared using polydopamine pre-coating layer as a reaction agent: Effective catalyst for air electrodes of Li/air batteries vol.575, 2013, https://doi.org/10.1016/j.jallcom.2013.05.178
  5. A simple method for surface modification of carbon by polydopamine coating for enhanced Li–air batteries vol.132, 2014, https://doi.org/10.1016/j.electacta.2014.03.175
  6. Nanofiber Carbon-Supported Phthalocyanine Metal Complexes as Solid Electrocatalysts for Lithium-Air Batteries vol.218, 2016, https://doi.org/10.1016/j.electacta.2016.09.131
  7. Increasing the reversibility of Li–O2 batteries with caterpillar structured α–MnO2/N–GNF bifunctional electrocatalysts vol.157, 2015, https://doi.org/10.1016/j.electacta.2015.01.058
  8. A comparative study of nanostructured α and δ MnO2 for lithium oxygen battery application vol.4, pp.18, 2014, https://doi.org/10.1039/c3ra47659f
  9. Carbon/titanium oxide supported bimetallic platinum/iridium nanocomposites as bifunctional electrocatalysts for lithium-air batteries vol.20, pp.5, 2016, https://doi.org/10.1007/s10008-016-3134-6
  10. A metal–organic-framework/carbon composite with enhanced bifunctional electrocatalytic activities towards oxygen reduction/evolution reactions vol.42, pp.27, 2017, https://doi.org/10.1016/j.ijhydene.2017.02.063
  11. Carbon nanotube/Co3O4 nanocomposites selectively coated by polyaniline for high performance air electrodes vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-09219-9
  12. New strategy toward enhanced air electrode for Li–air batteries: apply a polydopamine coating and dissolved catalyst vol.4, pp.34, 2014, https://doi.org/10.1039/c4ra01015a
  13. The bifunctional electrocatalytic activity of perovskite La0.6Sr0.4CoO3−δ for oxygen reduction and evolution reactions vol.5, pp.25, 2015, https://doi.org/10.1039/C4RA16097E
  14. Effect of multi-catalysts on rechargeable Li–air batteries vol.591, 2014, https://doi.org/10.1016/j.jallcom.2013.12.208
  15. PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes vol.6, pp.1, 2016, https://doi.org/10.1038/srep19962
  16. Buckypaper electrode containing carbon nanofiber/Co3O4 composite for enhanced lithium air batteries vol.268, 2014, https://doi.org/10.1016/j.ssi.2014.03.010