• Title/Summary/Keyword: Electro-magnetic Noise

Search Result 100, Processing Time 0.019 seconds

The Prediction of Conducted EMI In PWM Inverter Fed Induction Motor Drive System (PWM인버터-유도전동기 구동시스템의 전도노이즈 예측)

  • 안정준;이정호;원충연;김영석;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.579-588
    • /
    • 1999
  • This paper presents a technique for predicting the conductLu EMI(Electro Magnetic Interference) produced b by PWM inverter-induction motor drive system. To obtain the simulation models for prediction of conduct떠 n noise, high frequency model of an inverter leg with parasitic elements and multi-coil model of stator winding M are designed. Finally, the results are confirmLu from simulation and experiments.

  • PDF

Control for a Yaw Error Compensation System of Linear Motor Stage (리니어모터 스테이지 편요오차 보상장치 제어)

  • Lee, Seung-Hyun;Kang, Min-Sig
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.997-1005
    • /
    • 2008
  • Linear motor stage is a useful device in precision engineering field because of its simple power transmission mechanism and accurate positioning. Even though linear motor stage shows fine positioning accuracy along travel axis, geometric dependent errors which relay on machining and assembling accuracy should be addressed to increase total positioning performances. In this paper, we suggests a cost effective yaw error compensation servo-system which is mounted on platform of the stage and nullify travel position dependent yaw error. This paper also provides a method of designing a sliding mode control which is robust to existing friction disturbance and model uncertainties. The reachability condition of slinding mode control for the yaw error compensating servo-system has been established. From some experimental results by using an experimental set-up, the sliding mode control showed its effective in disturbance rejection and its performance was superior to conventional linear controls.

Monitoring of Beam-column Joint Using Optical Fiber Sensors (광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측)

  • Kim, Ki-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.3-11
    • /
    • 2005
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplexibility in one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability and dominate the strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.

A Study on the Active Balancing Device for Spindle System of Machine Tools (공작기계 주축시스템의 능동 밸런싱 장치에 관한 연구)

  • Moon, Jong-Duk;Kim, Bong-Suk;Kim, Do-Hyung;Lee, Soo-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.297-305
    • /
    • 2005
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reducevibration in rotating system is certainly needed for all high-speed spindles. An active balancing program using influence coefficient method and an active balancing device of an electro-magnetic type have been applied to the developed high-speed spindle system in this study. A reliable gain-scheduling control using influence coefficients of the reference model although system characteristics are changed is applied. The stability of reference influence coefficients is verified by frequency response functions. The active balancing experiment for the developed high-speed spindle during operation is well performed with an active balancing program and device. As a result, controlled unbalance responses are below the vibration limit at all rotating speed ranges with critical speed.

Integrated Monitoring System of Maglev Guideway based on FBG Sensing System (FBG 센서 기반의 자기부상열차 통합 모니터링 시스템)

  • Chung, Won-Seok;Kang, Dong-Hoon;Yeo, In-Ho;Lee, Jun-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.761-765
    • /
    • 2008
  • This study presents an effective methodology on integrated monitoring system for a maglev guideway using WDM-based FBG sensors. The measuring quantities include both local and global quantities of the guideway response, such as stains, curvatures, and vertical deflections. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Frequency contents obtained from the proposed method are compared with those from a conventional accelerometer. Verification tests were conducted on the newly-developed Korean Maglev test track. It has been shown that good agreement between the measured deflection and the estimated deflection is achieved. The difference between the two peak displacements was only 3.5% in maximum and the correlations between data from two sensing systems are overall very good. This confirms that the proposed technique is capable of tracing the dynamic behavior of the maglev guideway with an acceptable accuracy. Furthermore, it is expected that the proposed scheme provides an effective tool for monitoring the behavior of the maglev guideway structures without electro magnetic interference.

  • PDF

Study on Elimination of EMI in ELF-Band for EPS-Based Smart TV Control (전위계차센서 기반 스마트TV 제어를 위한 극저주파 전자기간섭 제거 연구)

  • Jang, Jin-Soo;Kim, Young-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.401-407
    • /
    • 2015
  • In this paper, we propose the method to eliminate EMI (Electro-Magnetic Interference) in ELF (Extremely Low Frequency) band below 2 KHz for extending the gesture-recognition distance of smart TVs to more than 3m using electric potential sensor. First, we measure the electric field generated from the back panel of a TV and propose the effective arrangement of two sets of differential sensors as well as the shielding method using metal fiber. Also, we eliminate the PLN (Power Line Noise) and other noise generated from the TV and sensors as well as surrounding environments using filters. Using the proposed EMI eliminating methods, we evaluate displacement ratio on measured signals according to distance between sensors and a moving hand. Experiment results show that our proposed method can extend the hand-gesture sensing distance using EPS (Electric Potential Sensor) up to more than 3m, which is enough to satisfy applicability of EPS based remote control to Smart TVs.

EMI Noise Reduction with New Active Zero State PWM for Integrated Dynamic Brake Systems

  • Baik, Jae-Hyuk;Yun, Sang-Won;Kim, Dong-Sik;Kwon, Chun-Ki;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.923-930
    • /
    • 2018
  • Based on the application of an integrated dynamic brake (IDB) system that uses a PWM inverter fed-AC motor drive to operate the piston, a new active zero state PWM (AZSPWM) is proposed to improve the stability and reliability of the IDB system by suppressing the conducted electro-magnetic interference (EMI) noise under a wide range of load torque. The new AZSPWM reduces common-mode voltage (CMV) by one-third when compared to that of the conventional space vector PWM (CSVPWM). Although this method slightly increases the output current ripple by reducing the CMV, like the CSVPWM, it can be used within the full range of the load torque. Further, unlike other reduced common-mode voltage (RCMV) PWMs, it does not increase the switching power loss. A theoretical analysis is presented and experiments are performed to demonstrate the effectiveness of this method.

Monitoring of Beam-Column Joint Using Optical Fiber Sensors (광섬유센서를 이용한 Beam-column 조인트의 하중에 따른 변위 계측)

  • 김기수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.595-601
    • /
    • 2003
  • For monitoring of the civil and building structure, optical fiber sensors are very convenient. The fiber sensors are very small and do not disturb the structural properties. They also have several merits such as electro-magnetic immunity, long signal transmission, good accuracy and multiplicity of one sensor line. Strain measurement technologies with fiber optic sensors have been investigated as a part of smart structure. In this paper, we investigated the possibilities of fiber optic sensor application to the monitoring of beam-column joints of structures. We expect that the fiber optic sensors replace electrical strain gauges. The commercial electric strain gauges show good stability und dominate tile strain measurement market. However, they lack durability and long term stability for continuous monitoring of the structures. In order to apply the strain gauges, we only have to attach them to the surfaces of the structures. In this paper, we investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show nice response to the structural behavior of the joint.

  • PDF

Research on the Non-Contact Detection of Internal Defects in a Rail Using Ultrasonic Waves (비접촉 초음파 방식의 철도레일 내부결함 검출에 관한 연구)

  • Han, Soon-Woo;Cho, Seung-Hyun;Kim, Joon-Woo;Heo, Tae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.1010-1019
    • /
    • 2012
  • Non-contact detection of internal defects in a rail using ultrasonic waves is discussed in this paper. Cracks in a rail may be the cause of a serious railway accident such as derailment if left undetected. Concurrent rail inspection method based on ultrasonic testing using piezoelectric transducers has several limitations as it should keep physical contact with the rail. This work suggests a non-contact detection of internal defects in a rail using ElectroMagnetic Acoustic Transducers (EMAT) which can produce and measure ultrasonic waves in a rail without any couplant. The EMATs for rail inspection are designed and fabricated and their working performance is verified through a series of experiments on various types of internal defects in test rails. The effect of lift-off between the transducers and the rail on the generated signals is also discussed.

EMC Debugging Technique for Image Equipments (영상기기의 EMC Debugging 기술)

  • Song, Min-jong;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2022
  • For the purpose of treating health checkups and recovery of patients in a super-aged society, hospitals use devices designed with a reduction circuit of electromagnetic waves associated with the specific absorption rate of electromagnetic waves absorbed by the human body. In this paper, we proposed a filter improvement design method capable of reducing electromagnetic waves. As a result of confirming the validity of the proposed technique through simulation and experimental results, the following result values were obtained. Applying the common-mode (CM) inductor 4 mH to a calibration circuit, noise decreased in a multiband spectrum. Using the differential mode(DM) inductor 40 µH element in the primary calibration circuit, the noise decreased by 15 dB or more in the 3 MHz band spectrum. Also, applying the Admittance Capacitance (Y-Cap) 10 nF element in the secondary calibration circuit resulted in the decrease by more than 30 dB in the band spectrum before 2 MHz. After using a common-mode inductor 4 mH element in the tertiary calibration circuit, it decreased by more than 15 dB in the band spectrum after 2 MHz.