• Title/Summary/Keyword: Electro-analytical Method

Search Result 61, Processing Time 0.027 seconds

Analysis of Vibration-powered Piezoelectric Energy Harvesters by Using Equivalent Circuit Models (등가 회로 모델을 이용한 압전 진동 에너지 수확 장치의 해석)

  • Kim, Jae-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.397-404
    • /
    • 2010
  • The use of equivalent circuit models of piezoelectric energy harvesters is inevitable when power circuitry including rectifying and smoothing circuit elements is connected to them for evaluating DC electrical outputs. This is because it is difficult to incorporate the electro-mechanical coupling resulting from the additional circuitry into the conventional finite element analysis. Motivated by this observation, we propose a method to accurately extract the equivalent circuit parameters by using commercially available FEM software such as ANSYS which provides three-dimensional AC piezoelectric analysis. Then the equivalent circuit can be analyzed by circuit simulators such as $SimPowerSystems^{TM}$ of MATLAB. While the previous works have estimated the circuit parameters by experimental measurements or by analytical solutions developed only for limited geometries and boundary conditions, the proposed method has no such limitation because piezoelectric energy harvesters of any shapes and boundary conditions can be treated in FEM software. For the verification of the proposed method, multi-modal AC electrical power output by using a corresponding equivalent circuit is compared with that by ANSYS. The proposed method is then shown to be very useful in the subsequent evaluation of DC electrical output which is obtained by attaching a bridge diode and a storage capacitor to a piezoelectric energy harvester.

Modeling and Filter Design through Analysis of Conducted EMI in Switching Power Converters

  • Vimala, R.;Baskaran, K.;Aravind Britto, K.R.
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.632-642
    • /
    • 2012
  • This paper presents a filter analysis of conducted Electro-Magnetic Interference (EMI) in switching power converters (SPC) based on noise impedances. The EMI characteristics of SPC can be analytically deduced from a circuit theoretical viewpoint. The analytical noise model is investigated to get a full understanding of the EMI mechanism. It is shown that with suitable and justified model, filters pertinent to EMI noise is investigated. The EMI noise is identified by time domain measurements associated with an isolated half-bridge ac-dc converter. Practical filters like LC filter, ${\pi}$ filter and complete EMI filters are investigated. The proposed analysis and results can provide a guideline for improving the effectiveness of filtering schemes in SPC. Experimental results are also included to verify the validity of the proposed method. The results obtained satisfy the Federal Communications Commission (FCC) class A and class B regulations.

Analysis of Inductance and Reluctance Torque Characteristics for Thin-Type IPMSM (박형구조를 갖는 매입형 동기전동기의 인덕턴스 산정 및 특성해석)

  • Kim Ki-Nam;Yang Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.10
    • /
    • pp.602-609
    • /
    • 2004
  • This paper presents electro-magnetic characteristics of an Interior type Permanent Magnet Synchronous Motor (IPMSM) for traction applications. The importance of instantaneous electric propulsion capability for high torque has been highlighted in the present study and thus parametric analysis is performed by Finite Element Method (FEM). The paper provides analytical & experimental results, which demonstrate a performance of the studied traction motor The goal of this paper is to present a maximum power performance for traction motor which works extension of its own rated power. Experimental results meet well with FEM analysis of traction motor owing to inductance difference.

Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure

  • Zeng, Xiaohu;Yue, Zhufeng;Zhao, Bin;Wen, S.F.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.237-257
    • /
    • 2014
  • In this paper, we adopted a two-dimensional analytical electro-elastic model to predict the stress distributions of the piezoelectric actuator in 3D case. The actuator was embedded in an elastic host structure under electrical loadings. The problem is reduced to the solution of singular integral equations of the first kind. The interfacial stresses and the axial normal stress in both plane stress state and plane strain state were obtained to study the actuation effects being transferred from the actuator to the host. The stress distributions of the PZT actuator in different length and different thickness were analyzed to guarantee the generality. The validity of the present model has been demonstrated by application of specific examples and comparisons with the corresponding results obtained from the Finite Element Method.

Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • An investigation of the nonlinear thermal buckling behavior of a nano-sized beam constructed from intelligent materials called piezo-magnetic materials has been presented in this article. The nano-sized beam geometry has been considered based on two assumptions: an ideal straight beam and an imperfect beam. For incorporating nano-size impacts, the nano-sized beam formulation has been presented according to nonlocal elasticity. After establishing the governing equations based on classic beam theory and nonlocal elasticity, the nonlinear buckling path has been obtained via Galerkin's method together with an analytical trend. The dependency of buckling path to piezo-magnetic material composition, electro-magnetic fields and geometry imperfectness has been studied in detail.

On the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple point masses

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.351-367
    • /
    • 2005
  • Multi-span beams carrying multiple point masses are widely used in engineering applications, but the literature for free vibration analysis of such structural systems is much less than that of single-span beams. The complexity of analytical expressions should be one of the main reasons for the last phenomenon. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-span uniform beam carrying multiple point masses. First, the coefficient matrices for an intermediate pinned support, an intermediate point mass, left-end support and right-end support of a uniform beam are derived. Next, the overall coefficient matrix for the whole structural system is obtained using the numerical assembly technique of the finite element method. Finally, the natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the related eigenfunctions respectively. The effects of in-span pinned supports and point masses on the free vibration characteristics of the beam are also studied.

Electroanalytical Measurement of TEDA (Triethylenediamine) in the Masks of War

  • Ariani, Zahra;Honarmand, Ebrahim;Mostaanzadeh, Hossein;Motaghedifard, Mohammadhassan;Behpour, Mohsen
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • In this paper, for the first time, the electroanalytical study of Triethylenediamine, TEDA was done on a typically graphene modified carbon paste electrode (Gr/CPE) in pH=10.5 of phosphate buffer solutions (PBS). The surface morphology of the bare and modified electrodes was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electro-oxidation of TEDA was investigated at the surface of modified electrode. The results revealed that the oxidation peak current of TEDA at the surface of Gr/CPE is 2.70 times than that shown at bare-CPE. A linear calibration plot was observed in the range of 1.0 to 202.0 ppm. In this way, the detection limit was found to be 0.18 ppm. The method was then successfully applied to determination of TEDA in aqueous samples obtained from two kinds of activated carbon from the masks of war. On the other hand, density functional theory (DFT) method at B3LYP/6-311++G** level of theory and a conductor-like Polarizable Continuum Model (CPCM) was used to calculate the $pK_a$ values of TEDA. The energies of lowest unoccupied molecular orbital ($E_{LUMO}$) and highest occupied molecular orbital ($E_{HOMO}$), gap energy (${\Delta}E$) and some thermodynamic parameters such as Gibbs free energy of TEDA and its conjugate acid ($HT^+$) were calculated. The results of calculated $pK_a$ were found to be in good agreement with the experimental values.

System identification of a building structure using wireless MEMS and PZT sensors

  • Kim, Hongjin;Kim, Whajung;Kim, Boung-Yong;Hwang, Jae-Seung
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.191-209
    • /
    • 2008
  • A structural monitoring system based on cheap and wireless monitoring system is investigated in this paper. Due to low-cost and low power consumption, micro-electro-mechanical system (MEMS) is suitable for wireless monitoring and the use of MEMS and wireless communication can reduce system cost and simplify the installation for structural health monitoring. For system identification using wireless MEMS, a finite element (FE) model updating method through correlation with the initial analytical model of the structure to the measured one is used. The system identification using wireless MEMS is evaluated experimentally using a three storey frame model. Identification results are compared to ones using data measured from traditional accelerometers and results indicate that the system identification using wireless MEMS estimates system parameters with reasonable accuracy. Another smart sensor considered in this paper for structural health monitoring is Lead Zirconate Titanate (PZT) which is a type of piezoelectric material. PZT patches have been applied for the health monitoring of structures owing to their simultaneous sensing/actuating capability. In this paper, the system identification for building structures by using PZT patches functioning as sensor only is presented. The FE model updating method is applied with the experimental data obtained using PZT patches, and the results are compared to ones obtained using wireless MEMS system. Results indicate that sensing by PZT patches yields reliable system identification results even though limited information is available.

The Application of a Direct Coupled BEM-FEM Model to Predict the TL Characteristics of Simple Expansion Silencers with Vibratory Walls (진동 벽면을 가진 단순 확장형 소음기 모델의 투과손실 특성 해석을 위한 DIRECT BEM-FEM 연성 모델의 적용)

  • Choi, C.H.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.24-30
    • /
    • 1998
  • A directly coupled Boundary Element and Finite Element Model was applied to the dynamic analysis of a coupled acoustic silencer with vibratory wall. In this cupled BEM-FEM muffler model, the BEM model was used to discretize the acoustic cavity and the FEM model was used to discretize the vibratory wall structure. Then the BEM model was coupled with the FEM model. The results of the coupled BEM-FEM model for the dynamic analysis of the simple expansion type reactive muffler configurations with flexible walls were verified by comparing the predicted results to analytical solutions. In order to investigate the effects of the muffler's structural flexibility on its transmission loss(TL) characteristics, the results of the coupled BEM-FEM model in conjunction with the four-pole parameter theory were utilized. The muffler's TL characteristics using the BEM-FEM coupled model with flexible walls as compared to other muffler configurations was studied. Finally the muffler's TL values with respect to different wall's thickness are predicted and compared.

  • PDF

Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method

  • Emdadi, Mohsen;Mohammadimehr, Mehdi;Navi, Borhan Rousta
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.109-123
    • /
    • 2019
  • In this article, the free vibration analysis of annular sandwich plates with various functionally graded (FG) porous cores and carbon nanotubes reinforced composite (CNTRC) facesheets is investigated based on modified couple stress theory (MCST) and first order shear deformation theories (FSDT). The annular sandwich plate is composed of two face layers and a functionally graded porous core layer which contains different porosity distributions. Various approaches such as extended mixture rule (EMR), Eshelby-Mori-Tanaka (E-M-T), and Halpin-Tsai (H-T) are used to determine the effective material properties of microcomposite circular sandwich plate. The governing equations of motion are extracted by using Hamilton's principle and FSDT. A Ritz method has been utilized to calculate the natural frequency of an annular sandwich plate. The effects of material length scale parameters, boundary conditions, aspect and inner-outer radius ratios, FG porous distributions, pore compressibility and volume fractions of CNTs are considered. The results are obtained by Ritz solutions that can be served as benchmark data to validate their numerical and analytical methods in the future work and also in solid-state physics, materials science, and micro-electro-mechanical devices.