• Title/Summary/Keyword: Electrical through-connection

Search Result 252, Processing Time 0.036 seconds

Impulse Response Characteristics of the Grounding Systems with respect to the Common-Connection Position in Power Utility System (수변전설비에서 접지시스템의 공결점의 위치에 따른 임펄스 응답특성)

  • Lee, B.H.;Eom, J.H.;Kim, S.W.;Shim, P.S.;Lee, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2149-2151
    • /
    • 1999
  • This paper describes the impulse response characteristics of the grounding systems in power utility system. Several regulations regarding to electric power equipments, services and managements require that the groundings of class 1 ($E_1$) and class 2 ($E_2$) must be connected at the common point in grounding systems. In addition, the grounding for arrester ($E_{LA}$), which belongs to the grounding of class 1, should be connected at the same point. However, there is no method and position of common-connection at anywhere. In this work, when the impulse current was injected through the grounding conductor for arrester, the investigations measuring and analyzing potential rises induced at the common connection point and other grounding conductors were conducted. The experiments were carried out in the conditions of the grounding conductor of 25m long and the near or remote common connection from ground electrode. The lightning impulse current was applied so as to simulate the on-set of arrester due to lightning and/or switching surges.

  • PDF

Analysis on Current Limiting Characteristics of Series Connection-type SFCL with Two Magnetically Coupled Circuits Applied into a Simulated Power System (모의전력계통에 적용된 두 개의 자기결합 회로를 갖는 직렬연결형 초전도 전류제한기의 전류제한 특성 분석)

  • Ko, Seok-Cheol;Lee, Shin-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • The series connection-type superconducting fault current limiter (SFCL) with two magnetically coupled circuits was suggested and its effectiveness through the analysis on the current limiting and recovery characteristics was described. The fault current limiting characteristics of the proposed SFCL as well as the load voltage sag compensating characteristics according to the winding direction were investigated. To confirm the fault current limiting and the voltage sag suppressing characteristics of the this SFCL, the short-circuit tests for the simulated power system with the series connection-type SFCL were carried out. The series connection-type SFCL designed with the additive polarity winding was shown to perform more effective fault current limiting and load voltage sag compensating operations through the fast quench occurrence right after the fault appears and the fast recovery operation after the fault removes than that with the subtractive polarity winding.

Simulation for fault current of wind turbine generating system following transformer winding connection (변압기결선에 따른 풍력발전시스템의 고장전류에 대한 시뮬레이션)

  • An, Hae-Joon;Ro, Kyoung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.454-457
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by MARTLB & SIMULINK. The simulation shall be performed by assuming single line to ground fault generated in the system Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

Analysis on Current Limiting and Recovery Characteristics of a SFCL using Magnetic Coupling of Two Coils with Series Connection (직렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 회복특성 분석)

  • Lim, Sung-Hun;Kim, Jin-Seok;Ahn, Jae-Min;Moon, Jong-Fil;Kim, Jae-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.281-283
    • /
    • 2008
  • The superconducting fault current limiter (SFCL) using magnetic coupling of two coils with series connection, which was suggested by us, has the merit to increase the operational current and the limiting impedance of the SFCL through the adjustment of the inductance ratio and the winding direction of two coils. In addition, the recovery characteristics of the SFCL is affected by the winding direction of two coils as well as two coils' inductance ratio. In this paper, the fault current limiting and recovery characteristics of a SFCL using magnetic coupling of two coils with series connection were analyzed. Through the analysis based on the experimental results, the recovery characteristics and the current limiting characteristics of the SFCL were confirmed to be improved more in case of the additive polarity winding.

  • PDF

The Research into Connecting System for Aerial Bundled Cable in Distribution Line (ABC 배전 접속 시스템에 대한 연구)

  • 이용순;최경선;주종민;이철호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.495-498
    • /
    • 2001
  • The distribution line through which electricity is supplied from substation to customer generally varies by underground line and overhead line. In contrast that the underground line is shielded, the overhead lines do not have the shield layer. To overcome this weak point of the overhead lines, the aerial bundled cable(ABC) connection systems have been developed. The basic concept of the ABC connection system is the application of the underground cable system containing complete shield layer to the overhead cable system. The ABC system is the innovative technologies which enable the prevention of electric shocks, reduction of the maintenance charge and damage of the cable. This paper give a full detail of vertical connection system applied within a country.

  • PDF

Propagation characteristics of AE signal in the connection of GIS (GIS 결합부의 음향신호 전달특성)

  • 서판석;최남호;구경완;김종석;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.311-314
    • /
    • 2001
  • This paper describes the simulation study, conducted on the propagation characteristics of AE signal in the connection of GIS. In the high voltage and large power system, the equipment with SF$\sub$6/ gas insulation which consists of the component part enclosed in the compressed gas has less affected by the environment than with air insulation. When the breakdown in the electric installation occurs, it takes much time to repair them though. Therefore it is very important to diagnose the propagation characteristics of AE signal in the GIS. So, in this investigation, we make a plane model of 362 kV GIS and modal and harmonic analysis to observe the vibro-acoustic property. Through the result of the analysis, we can make a further understanding on the vibro-acoustic characteristics of AE singnal in the connection of GIS.

  • PDF

A Study on Grounding Resistance by Parallel Connection (병렬 접속에 의한 접지저항에 관한 연구)

  • 고희석;최종규;류희석;김주찬
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.307-312
    • /
    • 2002
  • For accuracy of an experiment, measure changing of grounding resistance by short period after construction and investigated the efficiency of grounding's different methode of parallel connection. We could confirm on measurement's accuracy, error through comparing the theoretical value and measured value. Therefore, reduction ratio can be expected from execution measurement to receive a target resistance value. By the result, we could evaluate the method of rod grounding electrode's proper execution

  • PDF

Evaluation on Effect of Wind Power Generation System According to Transformer Winding Connection at Matlab&Simulink (MATLAB&SIMULINK에서 변압기 결선에 따른 풍력발전 시스템의 영향 평가)

  • An, Hae-Joon;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.772-773
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind power generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

Analysis on Generation Power according to Connection Structure for PV Panel under Shadow Condition (그림자 조건에서 태양광 패널의 접속구조에 따른 발전량 분석)

  • Jeong, Woo-Yong;Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.94-102
    • /
    • 2020
  • Considering that the output voltage and current of a single PV panel are limited in PV power generation, a PV array should be constructed by connecting several PV panels in series and parallel to meet the required voltage/power levels for power generation capacity. When a PV array is partially shaded, the maximum power generation depends on the configuration of a PV array and the presence or absence of blocking diodes. This study considers six PV array configurations and the presence or absence of blocking diodes. An optimum connection structure was proposed to maximize power generation in a partial shadow condition. Results were verified through simulation and an experiment.

Analysis for the Ferroresonance on the Transformer by Overvoltage and Prevention Measures (과전압에 의한 변압기 철공진 분석 및 방지대책)

  • Yun, Dong-Hyun;Shin, Dong-Yeol;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1543-1550
    • /
    • 2015
  • Ferroresonance is a non-linear vibrational phenomenon that is generated by the electrical interaction of the inductance component with the capacitor component of a certain capacitance as the device of the inductance component such as a transformer is saturated due to the degradation, the waveform distortion of current and voltage, and the oscillation of overcurrent and overvoltage in a system. Recently, ferroresonance was generated from the waveform distortion of current and voltage, or the overvoltage or undervoltage phenomenon caused by the nature of an electrical power system and design technology of the transformer in the three phase transformer system. Hence, in general, ferroresonance analyzed by converting to the LC equivalent circuit. However, in general, the aforementioned analytical method only applies to the resonance phenomenon that is generated by the interaction of the capacitance of bussbar and grounding, and switching as the capacitor component with PT and the transformer as the inductance component in a system. Subsequently, the condition where ferroresonance was generated since overvoltage was supplied as line voltage to the phase voltage and thus the iron core is saturated due to the interconnection between grounded and ungrounded systems could not be analyzed when single phase PT was connected in a ${\Delta}$/Y connection system. In this study, voltage swell in the configuration of grounded circuit of a step-up transformer with the ${\Delta}-{\Delta}$ connection linked to PT for control power and the ferroresonance generated by overvoltage when the line voltage of the ${\Delta}-{\Delta}$ connection was connected to the phase voltage of the grounded Y-Y connection were analyzed using PSCAD / EMTDC through the failure case of the transformer caused by ferroresonance in the system with the ${\Delta}-{\Delta}$/Y-Y connection, and subsequently, the preventive measure of ferroresonance was proposed.