• Title/Summary/Keyword: Electrical sheet

Search Result 902, Processing Time 0.025 seconds

A STUDY ON THE RESPONSES OF OSTEOBLASTS TO VARIOUS SURFACE-TREATED TITANIUM

  • Lee Joung-Min;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.307-326
    • /
    • 2004
  • Statement of problem. The long-term success of implants is the development of a stable direct connection between bone and implant surface, which must be structural and functional. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. Among them, altering the surface properties can modify cellular responses such as cell adhesion, cell motility and bone deposition. Purpose. This study was to evaluate the cellular behaviors on the surface-modified titanium by morphological observation, cellular proliferation and differentiation. Material and methods. Specimens were divided into five groups, depending on their surface treatment: electropolishing(EP) anoclizing(AN), machining(MA), blasting with hydroxyapatite particle(RBM) and electrical discharge machining(EDM). Physicochemical properties and microstructures of the specimens were examined and the responses of osteoblast-like cells were investigated. The microtopography of specimens was observed by scanning electron microscopy(SEM). Surface roughness was measured by a three-dimensional roughness measuring system. The microstructure was analyzed by X-ray diffractometer(XRD) and scanning auger electron microscopy(AES). To evaluate cellular responses to modified titanium surfaces, osteoblasts isolated from neonatal rat were cultured. The cellular morphology and total protein amounts of osteoblast-like cell were taken as the marker for cellular proliferation, while the expression of alkaline phosphatase was used as the early differentiation marker for osteoblast. In addition, the type I collagen production was determined to be a reliable indicator of bone matrix synthesis. Results. 1. Each prepared specimen showed specific microtopography at SEM examination. The RBM group had a rough and irregular pattern with reticulated appearance. The EDM-treated surface had evident cracks and was heterogeneous consisting of broad sheet or plate with smooth edges and clusters of small grains, deep pores or craters. 2. Surface roughness values were, from the lowest to the highest, electropolished group, anodized group, machined group, RBM group and EDM group. 3. All groups showed amorphous structures. Especially anodized group was found to have increased surface oxide thickness and EDM group had titaniumcarbide(TiC) structure. 4. Cells on electropolished, anodized and machined surfaces developed flattened cell shape and cells on RBM appeared spherical and EDM showed both. After 14 days, the cells cultured from all groups were formed to be confluent and exhibited multilayer proliferation, often overlapped or stratified. 5. Total protein amounts were formed to be quite similar among all the group at 48 hours. At 14 days, the electropolished group and the anodized group induced more total protein amount than the RBM group(P<.05). 6. There was no significant difference among five groups for alkaline phosphatase(ALP) activity at 48 hours. The AN group showed significantly higher ALP activity than any other groups at 14 days(P<.05). 7. All the groups showed similar collagen synthesis except the EDM group. The amount of collagen on the electropolished and anodized surfaces were higher than that on the EDM surface(P<.05).

Property of Composite Titanium Silicides on Amorphous and Crystalline Silicon Substrates (아몰퍼스실리콘의 결정화에 따른 복합티타늄실리사이드의 물성변화)

  • Song Oh-Sung;Kim Sang-Yeob
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.1-5
    • /
    • 2006
  • We prepared 80 nm-thick TiSix on each 70 nm-thick amorphous silicon and polysilicon substrate using an RF sputtering with $TiSi_2$ target. TiSix composite silicide layers were stabilized by rapid thermal annealing(RTA) of $800^{\circ}C$ for 20 seconds. Line width of $0.5{\mu}m$ patterns were embodied by photolithography and dry etching process, then each additional annealing process at $750^{\circ}C\;and\;850^{\circ}C$ for 3 hours was executed. We investigated the change of sheet resistance with a four-point probe, and cross sectional microstructure with a field emission scanning electron microscope(FE-SEM) and transmission electron microscope(TEM), respectively. We observe an abrupt change of resistivity and voids at the silicide surface due to interdiffusion of silicide and composite titanium silicide in the amorphous substrates with additional $850^{\circ}C$ annealing. Our result implies that the electrical resistance of composite titanium silicide may be tunned by employing appropriate substrates and annealing condition.

  • PDF

Electrical Properties of Ultra-shallow$p^+-n$ Junctions using $B_{10}H_{14}$ ion Implantation ($B_{10}H_{14}$ 이온 주입을 통한 ultra-shallow $p^+-n$ junction 형성 및 전기적 특성)

  • 송재훈;김지수;임성일;전기영;최덕균;최원국
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Fabricated were ultra-shallow $p^+-n$ junctions on n-type Si(100) substrates using decaborane $(B_{10}H_{14})$ ion implantation. Decaborane ions were implanted at the acceleration voltages of 5 kV to 10 kV and at the dosages of $1\times10^{12}\textrm{cm}^2$.The implanted specimens were annealed at $800^{\circ}C$, $900^{\circ}C$ and $1000^{\circ}C$ for 10 s in $N_2$ atmosphere through a rapid thermal process. From the measurement of the implantation-induced damages through $2MeV^4 He^{2+}$ channeling spectra, the implanted specimen at the acceleration voltage of 15 kV showed higher backscattering yield than those of the bare n-type Si wafer and the implanted specimens at 5 kV and 10 kV. From the channeling spectra, the calculated thicknesses of amorphous layers induced by the ioin implantation at the acceleration voltages of 5 kV, 10 kV and 15 kV were 1.9 nm, 2.5 nm and 4.3 nm, respectively. After annealing at $800^{\circ}C$ for 10 s in $N_2$ atmosphere, most implantation-induced damages of the specimens implanted at the acceleration voltage of 10 kV were recovered and they exhibited the same channeling yield as the bare Si wafer. In this case, the calculated thickness of the amorphous layer was 0.98 nm. Hall measurements and sheet resistance measurements showed that the dopant activation increased with implantation energy, ion dosage and annealing temperature. From the current-voltage measurement, it is observed that leakage current density is decreased with the increase of annealing temperature and implantation energy.

A Study on the Photo-Conductive Characteristics of (p)ZnTe/(n)Si Solar Cell and (n)CdS-(p)ZnTe/(n)Si Poly-Junction Thin Film ((p)ZnTe/(n)Si 태양전지와 (n)CdS-(p)ZnTe/(n)Si 복접합 박막의 광도전 특성에 관한 연구)

  • Jhoun, Choon-Saing;Kim, Wan-Tae;Huh, Chang-Su
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.74-83
    • /
    • 1991
  • In this study, the (p)ZnTe/(n)Si solar cell and (n)CdS-(p)ZnTe/(n)Si poly-junction thin film are fabricated by vaccum deposition method at the substrate temperature of $200{\pm}1^{\circ}C$ and then their electrical properties are investigated and compared each other. The test results from the (p)ZnTe/(n)Si solar cell the (n)CdS-(p)ZnTe/(n)Si poly-junction thin fiim under the irradiation of solar energy $100[mW/cm^2]$ are as follows; Short circuit current$[mA/cm^2]$ (p)ZnTe/(n)Si:28 (n)CdS-(p)ZnTe/(n)Si:6.5 Open circuit voltage[mV] (p)ZnTe/(n)Si:450 (n)CdS-(p)ZnTe/(n)Si:250 Fill factor (p)ZnTe/(n)Si:0.65 (n)CdS-(p)ZnTe/(n)Si:0.27 Efficiency[%] (p)ZnTe/(n)Si:8.19 (n)CdS-(p)ZnTe/(n)Si:2.3 The thin film characteristics can be improved by annealing. But the (p)ZnTe/(n)Si solar cell are deteriorated at temperatures above $470^{\circ}C$ for annealing time longer than 15[min] and the (n)CdS-(p)ZnTe/(n)Si thin film are deteriorated at temperature about $580^{\circ}C$ for longer than 15[min]. It is found that the sheet resistance decreases with the increase of annealing temperature.

  • PDF

Influence of O2-Plasma Treatment on the Thin Films of H2 Post-Treated BZO (ZnO:B) (수소 플라즈마 처리된 BZO 박막에 산소 플라즈마의 재처리 조건에 따른 BZO 박막 특성)

  • Yoo, H.J.;Son, C.G;Yoo, J.H.;Park, C.K.;Kim, J.S.;Park, S.G.;Kang, H.D.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.275-280
    • /
    • 2010
  • The influence of $O_2$-plasma treatment on $H_2$ post-treated BZO (ZnO:B) thin film using MOCVD (Metal-Organic Chemical Vapor Deposition) are investigated. An $O_2$-plasma treatment of the $H_2$ post-treated BZO thin films resulted in XRD peak of (100), (101) and (110). Also, electrical properties resulted in an increase in sheet resistance and work function. The weighted optical transmittance and haze at 300~1,100 nm of BZO thin films with $O_2$-plasma treatment on the $H_2$ post-treatment show approximately 86% and 15%, respectively.

Fabrication process of embedded passive components in MCM-D (MCM-D 기판 내장형 수동소자 제조공정)

  • 주철원;이영민;이상복;현석봉;박성수;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 1999
  • We developed Fabrication process of embedded passive components in MCM-D substrate. The proposed MCM-D substrate is based on Cu/photosensitive BCB multilayer. The substrate used is Si wafer and Ti/cu metallization is used to form the interconnect layer. Interconnect layers are formed with 1000$\AA$ Ti/3000$\AA$ Cu by sputtering method and 3$\mu\textrm{m}$ Cu by electrical plating method. In order to form the vias in photosensitive BCB layer, the process of BCB and plasma etch using $C_2F_6$ gas were evaluated. The MCM-D substrate is composed of 5 dielectric layers and 4 interconnect layers. Embedded resistors are made with NiCr and implemented on the $2^{nd}$ dielectric layer. The sheet resistance of NiCr is controlled to be about 21 $\Omega$/sq at the thickness of 600$\AA$. The multi-turn sprial inductors are designed in coplanar fashion on the $4^{th}$ interconnect layer with an underpass from the center to outside using the lower $3^{rd}$ interconnect layer. Capacitors are designed and realized between $1^{st}$ interconnect layer and $2^{nd}$ interconnect layer. An important issue in capacitor is the accurate determination of the dielectric thickness. We use the 900$\AA$ thickness of PECVD silicon nitride film as dielectric. Capacitance per unit area is about 88nF/$\textrm {cm}^2$at the thickness of 900$\AA$. The advantage of this integration process is the compatibility with the conventional semiconductor process due to low temperature PECVD silicon nitride process and thermal evaporation NiCr process.

  • PDF

High Transparent Planar Dipole Antenna using Ionized Salt-water of ASA Structure (이온화된 소금물을 이용한 ASA 구조의 고 투명 평면형 다이폴 안테나)

  • Phan, Duy Tung;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.492-498
    • /
    • 2021
  • This feasibility study evaluated an optically transparent planar antenna using liquid salt-water as the conducting material. The most significant reason behind using liquid salt-water for transparent antenna applications is its excellent average optical transparency (OTav) (> 95% at a salinity of 40 ppt) compared to other typical solid transparent thin-film electrodes, such as indium tin oxide (ITO:> 73%) or multi-layer films (MLF: > 78%). Each conductive arm of the proposed dipole is constructed from a salt-water layer held between two clear planar acrylic layers (��r = 2.61, tan�� = 0.01, OTav > 90%) (acrylic/salt-water/acrylic; ASA) due to surface tension. To examine the electrical and optical properties of the ASA structure, the surface tension was measured to determine the thickness of the salt-water layer that finalized its sheet resistance and OTav. The average gain and efficiency of the antenna were 1.72 dBi and 74%, respectively, in the operating UHF (Ultra high frequency) band (470-771 MHz). Therefore, the proposed antenna can be a good candidate for applications as a transparent planar antenna using salt-water.

Heating Characteristics of Planar Heater Fabricated with Different Mixing Ratios of MXene-CNT-WPU Composites (MXene-CNT-WPU 복합소재 기반 면상발열체의 배합 비율에 따른 발열 특성)

  • Hyo-Jun, Oh;Quy-Dat, Nguyen;Yoonsik, Yi;Choon-Gi, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.278-284
    • /
    • 2022
  • This study presents an excellent planar heater based on low-dimensional composites. By optimizing the ratio of 1D carbon nanotubes (CNT) and 2D MXene (Ti3C2TX), it is possible to create a planar heater that has superior electrical conductivity and high heat generation characteristics. Low-dimensional composites were prepared by mixing CNT paste and MXene solution with eco-friendly waterborne polyurethane (WPU). In order to find the optimal mixing ratio for the MXene-CNT-WPU composites, samples with MXene to CNT weight ratios of 3:1, 1:1, 1:3, 1:7, and 1:14 were investigated. In addition to these different weight ratios, 5 wt% WPU was equally applied to each sample. It was confirmed that the higher the weight ratio of CNT, the lower the sheet resistance and the higher the heating temperature. In particular, when the MXene-CNT-WPU planar heater was fabricated by mixing MXene and CNT at a weight ratio of 1:7 and 1:14, the heating temperature was higher than the heating temperature of a CNT-WPU planar heater. These characteristics are due to the optimized mixture of the 1D materials (CNT) and the 2D materials (MXene) causing the formation of a flat surface and a dense network structure. The low-dimensional composites manufactured with the optimized mixing ratios found in this study are expected to be applied in flexible electronic devices.

Study on The Effect of Electrode Drying Temperature on The Silicon Electrode Characteristics of Lithium Secondary Batteries (전극 건조 온도가 리튬이차전지의 실리콘 전극 특성에 미치는 영향 연구)

  • Dong-Wan Ham;Myeong-Hui Jeong;Jeong-Tae Kim;Beom-Hui Lee;Hyeon-Mo Moon;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.3
    • /
    • pp.97-104
    • /
    • 2024
  • The electrodes of commercialized lithium secondary batteries are manufactured through a wet coating process, and the drying process (DC) is a very important factor as to electrode production speed and process cost. In this study, silicon anodes were manufactured under high-temperature (180 ℃) and low-temperature (50 ℃) DC to investigate the quality and the electrochemical performance of Si-electrodes according to DC. High-temperature DC can quickly evaporate the solvent in the Si-electrode slurry, improving the electrode production rate. However, this also causes the electrode composite to peel off from the current collector. As a result, the Si-electrode's adhesion weakened, and the electrode coating's quality deteriorated. In addition, the Si-electrode manufactured under high-temperature was found to have a thicker composite material than the Si-electrode manufactured under low-temperature. Si-electrodes manufactured under high-temperature had higher sheet resistance and lower electrical conductivity than those manufactured under low-temperature. Consequently, the Si-electrode manufactured under low-temperature showed 152.5% superior cycle performance compared to the Si-electrode manufactured under high-temperature. (Discharge capacities of Si-electrodes manufactured under high-temperature and low-temperature DC were 844 and 1287 mAh g-1, respectively, after 300 cycles). Establishing the DC of Si-electrodes can easily provide new perspectives to improve the quality and stability of Si-electrodes.

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF