• Title/Summary/Keyword: Electrical power monitoring

Search Result 903, Processing Time 0.02 seconds

Calculation of CO2 Emission for Fossil-Fired Thermal Power Plant considering Coal-Oil Mix Rate (혼소율을 고려한 화력 발전소의 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Kim, Soon-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.67-72
    • /
    • 2010
  • G8 summit meeting held in July 2008 decided to set up a long-term goal, by 2050, reducing the world greenhouse emissions by half of those emitted in 1990. In November 2009, the Government announced to reduce the national $CO_2$ emission by 30[%] of BAU by 2020. Electric power industries in Korea produce most of their electricity by burning fossil fuels, and emit approximately 28[%] of national $CO_2$ emissions. Monitoring the $CO_2$ emissions. Monitoring the $CO_2$ emission of electric power plants is very important. This paper presents a method to calculate the hourly $CO_2$ emission for a thermal power plant burning mixture of coal and oil using the performance test data and coal-oil mix rate. An example of $CO_2$ emission calculation is also demonstrated.

Security Monitoring System for Apartment House Building Using Paver Line Carrier (전력선 통신을 이용한 집단주택 안전관리 시스템)

  • Kim, In-Soo;Kim, Kwan-Ho;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.476-478
    • /
    • 1993
  • Instead of installing new communication wiring to each house in the apartment house building. the power distribution network. which is already installed in the building. can be use as communication medium. In a safty management, by adoption of power line communication system, at remote we can monitor safty related sensors such as fire, gas leakage, burglar intrusion and emergency call which are located at each house. From this viewpoint, we developed security monitoring system for apartment house building using power lines. Security monitoring system consists of Power Line Communication-Sub Controller (PLC-SC). Power Line Communication-Main Controller (PLC-MC) and Management System (MS). Between a PLC-MC and a PLC-SC, the transmission rate is 1200 bps in power lines and modulation technique is frequency shirt keying (FSK). In between a PLC-MC and a MS, the transmission rate is 1200 bps in communication line (RS-485). As a result of this research. transmission loss is 0.1dB per meter of intrabuilding distribution network. Transmission can be reach in 250 meters. So it is enough to communicate for security monitoring system in apartment house building.

  • PDF

A Centralized Monitoring System for Factory Electrical Installation Using Active Database (능동 데이터베이스를 이용한 중앙전력감시시스템)

  • Choi, Sang-Yule;Moon, Hyun-Ho;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.115-122
    • /
    • 2010
  • The main purpose of centralized monitoring system is to manage factory electrical installation efficiently by on-line data acquisition and supervisory control. The existing centralized system is only able to be managed by operator whenever electrical installation's faults are detected. Therefore, it may be possible for propagating the installation's faults when operator make the unexpected mistakes. To overcome the unexpected mistakes, in this paper, the author presents a centralized monitoring system for factory electrical installation using active database. by using active database production rule, stated system can minimize unexpected mistake and can operate centralized monitoring system efficiently. Test results on the five factory electrical installations show that performance is efficient and robust.

Designing of Smart WAMAC Infra Architecture based on Synchro-Phasor (Synchro-Phasor 기반의 Smart WAMAC 인프라 아키텍쳐 설계)

  • Kim, Ji-Young;Woo, Doug-Je;Kim, Sang-Tae;Choi, Mi-Hwa;Kim, Yong-Kwang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1549-1559
    • /
    • 2010
  • Modern power system is operated and managed in closed network environment with treating a great variety of data, and requirement of real time power system data is more increasing. However, it is difficult for operators to fast evaluate the condition of power system using only isolation network system such as SCADA or EMS regarding unexpecting situations occurring. Recent technology achievement in areas of distributed computing, networking high speed communications and digital control as well as the availability of accurate GPS time source are rapidly becoming the enabling factors for the development of a new generation of real time power grid monitoring tools. In this paper, architecture of WAMAC which is the wide area monitoring and control system not only to control but also to monitoring in real time is proposed and the plan of integration interface with legacy system such as EMS for providing power system analysis base data effectively is suggested.

Suggested Temperature Monitoring System for Distribution Transformers by Using Microcontroller Scheme

  • El-Gawad, Amal F. Abd
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2099-2104
    • /
    • 2015
  • The paper presents a monitoring system for the cooling of distribution transformers. The suggested system is controlled by a microcontroller scheme. The system is designed to control the oil temperature. It gives a solution to improve the cooling system by adding a number of fans especially for indoor transformers that are placed in badly-ventilated rooms. Also, the paper includes an alarm system with the possibility of tripping the transformer if it is necessary. The monitoring system consists of acquisition temperature sensor, and on-site unit. The hardware and software of the on-site unit are demonstrated with sufficient illustrations. Small prototype is constructed in the laboratory. Some laboratory experiments are carried out for examining the designed circuit by using Proteus Virtual System Modeling as well as for testing the prototype monitoring system. Concerning this research point, a study is carried out to evaluate the economic feasibility. The results are recorded and associated with many recommendations that may be valuable to electrical distribution (utility) companies.

Practical Applications of Multi-Agent Transformer Condition Monitoring (다수 변압기의 온라인 모니터링을 위한 실제 적용)

  • Yun, Ju-Ho;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.96-99
    • /
    • 2008
  • On-line condition monitoring is a useful tool for maintaining and extending the longevity of power transformers. An intelligent diagnostic system is desirable for operational safety and reliability. Bringing these concepts together results in a powerful support tool for engineers, reducing the volume of data to deal with, and making the data more meaningful. This paper describes how a multi-agent system for diagnosing the cause of transformer partial discharge activity was coupled with a method of UHF partial discharge monitoring, creating an on-line condition monitoring system. The challenges presented by the on-site environment are discussed, along with the implications for the complete system.

  • PDF

Ultra low-power active wireless sensor for structural health monitoring

  • Zhou, Dao;Ha, Dong Sam;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.675-687
    • /
    • 2010
  • Structural Health Monitoring (SHM) is the science and technology of monitoring and assessing the condition of aerospace, civil and mechanical infrastructures using a sensing system integrated into the structure. Impedance-based SHM measures impedance of a structure using a PZT (Lead Zirconate Titanate) patch. This paper presents a low-power wireless autonomous and active SHM node called Autonomous SHM Sensor 2 (ASN-2), which is based on the impedance method. In this study, we incorporated three methods to save power. First, entire data processing is performed on-board, which minimizes radio transmission time. Considering that the radio of a wireless sensor node consumes the highest power among all modules, reduction of the transmission time saves substantial power. Second, a rectangular pulse train is used to excite a PZT patch instead of a sinusoidal wave. This eliminates a digital-to-analog converter and reduces the memory space. Third, ASN-2 senses the phase of the response signal instead of the magnitude. Sensing the phase of the signal eliminates an analog-to-digital converter and Fast Fourier Transform operation, which not only saves power, but also enables us to use a low-end low-power processor. Our SHM sensor node ASN-2 is implemented using a TI MSP430 microcontroller evaluation board. A cluster of ASN-2 nodes forms a wireless network. Each node wakes up at a predetermined interval, such as once in four hours, performs an SHM operation, reports the result to the central node wirelessly, and returns to sleep. The power consumption of our ASN-2 is 0.15 mW during the inactive mode and 18 mW during the active mode. Each SHM operation takes about 13 seconds to consume 236 mJ. When our ASN-2 operates once in every four hours, it is estimated to run for about 2.5 years with two AAA-size batteries ignoring the internal battery leakage.

A study on the Monitoring System for Apartment Power Apparatus (공동주택에서 전력설비 감시에 관한 연구)

  • 김정태;이기홍;홍규장;유건수
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.2
    • /
    • pp.68-78
    • /
    • 1995
  • Until now, the electrical monitoring system had been used of the Graphic-Mosaic panel, which is located to the cellar at the apartment complex. it was inappropriated to man-power and system-organization at apartment complex. for that reason, in this paper IMS is presented. An Intelligent Monitoring System can provide and explanation of real-time opera- state of an electric power apparatus to its operators in apartment complex. IMS is proposed as a model for integration supervisory system whose primary tasks are to communicate line data with host-computer and slave-controller it is based on a generalized version of use-career and a trouble shoot knowledge base for diagnostic problem solving. to operate it, both of controller and its operator-view is deigned by the real-tune O.S TREND 940.

  • PDF

A study Improvement Direction for Arc Interruption Equipment and On-line Monitoring System of Consumer Low Voltage Facilities (수용가 저압 전기설비의 원격 감시시스템 및 아크차단 장치 활성화 방안에 관한 연구)

  • Kim, Gi-Hyun;Park, Chee-Hyun;Lim, Young-Bai;Choi, Myeong-Il;Bae, Suk-Myong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.79-86
    • /
    • 2008
  • Domestic and foreign follows the trend which is that safety checkup of electrical facilities is serviced by on-line system with joining information technology. This paper research improvement of what kind of system and law for market environment of electric power value added service. For improvement of market environment of electric power value added service, this paper researches improvement of on-line monitoring system and necessity of arc interruption and revision of arc related law.

An Improved Interval AHP Method for Assessment of Cloud Platform-based Electrical Safety Monitoring System

  • Wang, Shou-Xiang;Ge, Lei-Jiao;Cai, Sheng-Xia;Zhang, Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.959-968
    • /
    • 2017
  • Electrical safety monitoring System (ESMS) is a critical component in modern power systems, which is characterized by large-scale access points, massive users and versatile requirements. For convenience of the information integration and analysis, the software development, maintenance, and application in the system, the cloud platform based ESMS is established and assessed in this paper. Firstly the framework of the system is proposed, and then the assessment scheme with a set of evaluation indices are presented, by which the appropriate cloud product can be chosen to meet the requirements of a specific application. Moreover, to calculate the weights of the evaluation indices under uncertainty, an improved interval AHP method is adopted to take into consideration of the fuzziness of expert scoring, the qualitative consistency test, and the two normalizations in the process of eigenvectors. Case studies have been made to verify the feasibility of the assessment approach for ESMS.