• Title/Summary/Keyword: Electrical disaster

Search Result 284, Processing Time 0.023 seconds

Development of Arc Fault Interruption Control Circuit of Fault Voltage Sensing Type (사고전압 감지형 아크차단 제어회로 개발)

  • Kwak, Dong-Kurl;Byun, Jae-Ki;Lee, Bong-Seob
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-5
    • /
    • 2013
  • This paper studies on an arc fault interruption control circuit (AFICC) of fault voltage sensing type. The proposed voltage sensing type AFICC (VST_AFICC) is an electrical fire prevention apparatus that operates the existing circuit breaker with sensing the instantaneous voltage drop of line voltage when occurs electrical faults. The existing Earth Leakage Circuit Breaker (ELB), Molded_case Circuit Breaker (MCCB), and Residual Current Protective Devices (RCDs) used in low voltage distributing system don't have protective capability from electric arc faults to be a major factor of electrical fire. In this paper to improve such problems, a new VST_AFICC using the distortion of voltage waveform when occurs electrical faults is proposed to prevent electrical fire. There is characteristic that the control method of proposed apparatus is different from previous current sensing type. The proposed AFICC has merit that is manufactured by small size and light weight. The practicality of a new VST_AFICC is also verified through various operation analysis.

Evaluation of Setting Delay in Mortar Adding Superplasticizer Using Electrical Resistivity Measurement (전기비저항 측정법을 이용한 유동화 모르타르의 응결 지연 현상 평가)

  • Lee, Hanju;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.9-15
    • /
    • 2018
  • According to the development and use of self-consolidating concrete in field, interest in material properties of early-age concrete is rising. Setting time with hydration process of cement is one of significant indicator to evaluate the early-age material properties of concrete, various nondestructive methods including penetration resistance measurement have been proposed to estimate setting time. This study performed an experimental approach to evaluate setting time delay in mortar adding superplasticizer using electrical resistivity measurement. For this purpose, total nine types of mortar samples were prepared, and its electrical resistivity was monitoring during 24h after mixing. From the experimental result, rising time of electrical resistivity was used to evaluate setting delay of mortar, and penetration resistance was also measured for comparison. In addition, dynamic elastic modulus and compressive strength of 1day mortar were measured to investigate a possibility the use of electrical resistivity measurement for evaluation of early-age material properties.

A Study on the Improvement of Insulation cover for Instrument Transformer Used In Power Receiving System of Construction Sites (건설현장의 수전설비에서 사용되는 계기용변성기 절연커버의 성능개선에 관한 연구)

  • Gil, Hyoung-Jun;Choi, Chung-Seog;Kim, Hyang-Kon;Han, Woon-Ki;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.55-62
    • /
    • 2005
  • There are many risk factors of electrical shock caused by a minimum of protective devices, loose working environments, deterioration of installations at temporary power installations of construction sites. An insulation cover for instrument transformer(MOF) used in 22.9[kV] class power receiving system hasn't shown good performance in terms of electrical safety because of short clearance between insulation cover and each input and output wire junction part. The insulation cover is easily moved by outside environment as wind or rain because of different size between insulation cover and busing, also can be leaded to breakdown by tracking. Therefore, we have proposed the insulation cover which effectively can prevent from electrical disaster in this paper, and a utility model patent had been registered already. To decrease the electric field concentrated on specific part, we had roundly designed the shape of insulation cover and the clearance between cover and live part was adjusted to be longer than the existing thing. The proposed insulation cover was evaluated by using the electric field solution program.

The Influence of Forest Fire on the Characteristics of Polymer Insulator for Transmission Lines (산불영향에 따른 송전용 폴리머애자의 특성)

  • Lee Donu-Il;Chung Yong-Woon;Yu Kun-Yang;Choi In-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.127-131
    • /
    • 2005
  • Big fire such as mountain fire may cause the prevention of the functions of the overhead cables and insulators, which may affect the operation of the transmission lines. In the worst case, this kind of disaster may have a huge effect on the whole industry of a country. However, the study on the effect of the mountain fire on the transmission line is very rare. Therefore, in order to understand the effect of the mountain fire on the polymeric insulator for transmission lines, the author observed the deformation of the sheds of the polymeric insulators and the change of the discs of the porcelain insulators under fire, varying the ignition time using the artificial ignition testing equipment which simulates the mountain fire, and investigated the electrical and mechanical characteristics of the insulators after the ignition test. For the test, the miniature insulators made of polymeric material and porcelain have been utilized. As the result, the following conclusions were obtained. First, the porcelain insulator was degraded in electrical characteristics when the insulator was subjected to the fire for approximately 5 minutes; whereas, the polymeric insulator was not degraded though there were some damage on its sheds. Second, after 20 minute exposure to the fire, the polymeric insulator lost a lot of parts of sheds, but the electrical characteristics was lowered by around $20\%$, but the porcelain insulators were electrically degraded by more than $80\%$.

A Study on a Development of Automated Measurement Sensor for Forest Fire Surface Fuel Moistures (산불연료습도 자동화 측정센서 개발에 관한 연구)

  • YEOM, Chan-Ho;LEE, Si-Young;PARK, Houng-Sek;WON, Myoung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.917-935
    • /
    • 2020
  • In this study, an automated sensor to measure forest fire surface fuel moistures was developed to predict changes in the moisture content and risk of forest fire surface fuel, which was indicators of forest fire occurrence and spread risk. This measurement sensor was a method of automatically calculating the moisture content of forest fire surface fuel by electric resistance. The proxy of forest fire surface fuel used in this sensor is pine (50 cm long, 1.5 cm in diameter), and the relationship between moisture content and electrical resistance, R(R:Electrical resistance)=2E(E:Exponent of 10)+13X(X:Moisture content)-9.705(R2=0.947) was developed. In addition, using this, the software and case of the automated measurement sensor for forest fire surface fuel moisture were designed to produce a prototype, and the suitability (R2=0.824) was confirmed by performing field monitoring verification in the forest. The results of this study would contribute to develop technologies that can predict the occurrence, spread and intensity of forest fires, and are expected to be used as basic data for advanced forest fire risk forecasting technologies.

Development of Speaker Recognition System in FES for General Paralysis Patients (전신마비환자용 기능적 전기자극기 화자인식 시스템의 개발)

  • 진달복;이영석;이현희;정호춘;임승관;여운진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.819-825
    • /
    • 2003
  • The purpose of this study is to develop the speaker recognition system which can select one of operating modes in FES for general paralysis patients. As spiral injury by traffic accident, industrial disaster, or stroke has been increased, the development of FES(Functional Electrical Stimulator) system is urgent to prevent paralysis and atrophy, and to assist the patients walking. For these patients we developed FES system(1). To operate this system one of several operating modes must be selected. As this can not be done by general paralysis patients, an attempt has been tried in this study to select the mode by speaker recognition system. RSC-300 of sensory co. has been chosen as a speaker recognition chip, and PIC16F84 is adapted to interface RSC-300 and FES system.

Design and Implementation of Seismic Data Acquisition System using MEMS Accelerometer (MEMS형 가속도 센서를 이용한 지진 데이터 취득 시스템의 설계 및 구현)

  • Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.851-858
    • /
    • 2012
  • In this paper, we design a seismic data acquisition system(SDAS) and implement it. This system is essential for development of a noble local earthquake disaster preventing system in population center. In the system, we choose a proper MEMS-type triaxial accelerometer as a sensor, and FPGA and ARM processor are used for implementing the system. In the SDAS, each module is realized by Verilog HDL and C Language. We carry out the ModelSim simulation to verify the performances of important modules. The simulation results show that the FPGA-based data acquisition module can guarantee an accurate time-synchronization for the measured data from each axis sensor. Moreover, the FPGA-ARM based embedded technology in system hardware design can reduce the system cost by the integration of data logger, communication sever, and facility control system. To evaluate the data acquisition performance of the SDAS, we perform experiments for real seismic signals with the exciter. Performances comparison between the acquired data of the SDAS and the reference sensor shows that the data acquisition performance of the SDAS is valid.

The New Residual Current Protective Devices Operating by Resistive Leakage Current (저항성 누전전류에 의하여 동작하는 새로운 누전차단기)

  • Ham, Seung-Jin;Hahn, Song-Yop;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.198-207
    • /
    • 2008
  • The conventional Residual Current Protective Devices(RCD, or earth leakage circuit breaker, ELB) operates depending on the total leakage current which is the vector-sum of resistive and capacitive components of a leakage current. However, the electric disaster such as electric shock or fire is mainly caused by the resistive component. Therefore, in this view point, the RCD is more realistic when it operates by the resistive component of the leakage current. In this paper, a new algorithm for measuring the resistive leakage current from the total leakage current is suggested, and is realized to an actual circuit. According to the suggested algorithm, the resistive component of the leakage current can be found by integrating the total leakage current over only a half cycle of the line voltage, and it is realized by using analog switches and resettable integrators. It is confirmed through experiments that the suggested algorithm detects, within maximum average error of 6.74%, the resistive leakage current from the total leakage current, and the RCD employing the suggested algorithm brakes the circuit within the regular interrupt time(30msec).

Machine Reading Comprehension-based Question and Answering System for Search and Analysis of Safety Standards (안전기준의 검색과 분석을 위한 기계독해 기반 질의응답 시스템)

  • Kim, Minho;Cho, Sanghyun;Park, Dugkeun;Kwon, Hyuk-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.351-360
    • /
    • 2020
  • If various unreasonable safety standards are preemptively and effectively readjusted, the risk of accidents can be reduced. In this paper, we proposed a machine reading comprehension-based safety standard Q&A system to secure supporting technology for effective search and analysis of safety standards for integrated and systematic management of safety standards. The proposed model finds documents related to safety standard questions in the various laws and regulations, and then divides these documents into provisions. Only those provisions that are likely to contain the answer to the question are selected, and then the BERT-based machine reading comprehension model is used to find answers to questions related to safety standards. When the proposed safety standard Q&A system is applied to KorQuAD dataset, the performance of EM 40.42% and F1 55.34% are shown.

Study of oversampling algorithms for soil classifications by field velocity resistivity probe

  • Lee, Jong-Sub;Park, Junghee;Kim, Jongchan;Yoon, Hyung-Koo
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.247-258
    • /
    • 2022
  • A field velocity resistivity probe (FVRP) can measure compressional waves, shear waves and electrical resistivity in boreholes. The objective of this study is to perform the soil classification through a machine learning technique through elastic wave velocity and electrical resistivity measured by FVRP. Field and laboratory tests are performed, and the measured values are used as input variables to classify silt sand, sand, silty clay, and clay-sand mixture layers. The accuracy of k-nearest neighbors (KNN), naive Bayes (NB), random forest (RF), and support vector machine (SVM), selected to perform classification and optimize the hyperparameters, is evaluated. The accuracies are calculated as 0.76, 0.91, 0.94, and 0.88 for KNN, NB, RF, and SVM algorithms, respectively. To increase the amount of data at each soil layer, the synthetic minority oversampling technique (SMOTE) and conditional tabular generative adversarial network (CTGAN) are applied to overcome imbalance in the dataset. The CTGAN provides improved accuracy in the KNN, NB, RF and SVM algorithms. The results demonstrate that the measured values by FVRP can classify soil layers through three kinds of data with machine learning algorithms.