Acknowledgement
This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21CTAP-C164152-01).
References
- Abraham, S., Huynh, C. and Vu, H. (2020), "Classification of soils into hydrologic groups using machine learning", Data, 5(1), 2. https://doi.org/10.3390/data5010002.
- Al-Bared, M.A., Harahap, I.S., Marto, A., Abad, S.V.A.N.K. and Ali, M.O. (2019), "Undrained shear strength and microstructural characterization of treated soft soil with recycled materials", Geomech. Eng., 18(4), 427-437. https://doi.org/10.12989/gae.2019.18.4.427.
- Bai, X.D., Cheng, W.C., Ong, D.E. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
- Byun, Y.H., Hong, W.T. and Yoon, H.K. (2019), "Characterization of cementation factor of unconsolidated granular materials through time domain reflectometry with variable saturated conditions", Mater., 12(8), 1340. https://doi.org/10.3390/ma12081340.
- Chen, Y., Irfan, M., Uchimura, T., Cheng, G. and Nie, W. (2018), "Elastic wave velocity monitoring as an emerging technique for rainfall-induced landslide prediction", Landslid., 15(6), 1155-1172. https://doi.org/10.1007/s10346-017-0943-3.
- Colmenares, J., Davila, J., Vega, J. and Shin, J. (2018), "Tunnelling on terrace soil deposits: Characterization and experiences on the Bogota-Villavicencio road", Geomech. Eng., 15(3), 899-910. https://doi.org/10.12989/gae.2018.15.3.899.
- Engelmann, J. and Lessmann, S. (2021), "Conditional Wasserstein GAN-based oversampling of tabular data for imbalanced learning", Exp. Syst. Appl., 174, 114582. https://doi.org/10.1016/j.eswa.2021.114582.
- Feng, X., Li, S., Yuan, C., Zeng, P. and Sun, Y. (2018), "Prediction of slope stability using naive Bayes classifier", KSCE J. Civil Eng., 22(3), 941-950. https://doi.org/10.1007/s12205-018-1337-3.
- Fereidooni, D. (2018), "Assessing the effects of mineral content and porosity on ultrasonic wave velocity", Geomech. Eng., 14(4), 399-406. https://doi.org/10.12989/gae.2018.14.4.399.
- Forte, G., Chioccarelli, E., De Falco, M., Cito, P., Santo, A. and Iervolino, I. (2019), "Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements", Soil Dyn. Earthq. Eng., 122, 79-93. https://doi.org/10.1016/j.soildyn.2019.04.002.
- Gambill, D.R., Wall, W.A., Fulton, A.J. and Howard, H.R. (2016), "Predicting USCS soil classification from soil property variables using Random Forest", J. Terramech., 65, 85-92. https://doi.org/10.1016/j.jterra.2016.03.006.
- Heung, B., Ho, H.C., Zhang, J., Knudby, A., Bulmer, C.E. and Schmidt, M.G. (2016), "An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping", Geoderma, 265, 62-77. https://doi.org/10.1016/j.geoderma.2015.11.014.
- Kovacevic, M., Bajat, B. and Gajic, B. (2010), "Soil type classification and estimation of soil properties using support vector machines", Geoderma, 154(3-4), 340-347. https://doi.org/10.1016/j.geoderma.2009.11.005.
- Lee, J.S. and Yoon, H.K. (2015), "Theoretical relationship between elastic wave velocity and electrical resistivity", J. Appl. Geophys., 116, 51-61. https://doi.org/10.1016/j.jappgeo.2015.02.025.
- Lee, J.S. and Yoon, H.K. (2018), "Application example: Field Velocity Resistivity Probe (FVRP) for predicting pore pressure parameter B", Soil Dyn. Earthq. Eng., 107, 214-217. https://doi.org/10.1016/j.soildyn.2018.01.039
- Lee, J.S., Byun, Y.H. and Yoon, H.K. (2017), "Study of Activation Energy in Soil through Elastic Wave Velocity and Electrical Resistivity", Vadose Zone J., 16(6), 1-9. https://doi.org/10.2136/vzj2016.08.0073
- Lee, S.J. and Yoon, H.K. (2021), "Discontinuity predictions of porosity and hydraulic conductivity based on electrical resistivity in slopes through deep learning algorithms", Sensor., 21(4), 1412. https://doi.org/10.3390/s21041412.
- Liu, L.L., Yang, C. and Wang, X.M. (2020), "Landslide susceptibility assessment using feature selection-based machine learning models", Geomech. Eng., 25, 1-16. https://doi.org/10.12989/gae.2021.25.1.001.
- Luzi, L., Puglia, R., Pacor, F., Gallipoli, M.R., Bindi, D. and Mucciarelli, M. (2011), "Proposal for a soil classification based on parameters alternative or complementary to Vs 30", Bull. Earthq. Eng., 9(6), 1877-1898. https://doi.org/10.1007/s10518-011-9274-2.
- Min, D.H. and Yoon, H.K. (2021), "Suggestion for a new deterministic model coupled with machine learning techniques for landslide susceptibility mapping", Sci. Rep., 11(1), 1-24. https://doi.org/10.1038/s41598-021-86137-x.
- Puri, A. and Gupta, M.K. (2021), "Knowledge discovery from noisy imbalanced and incomplete binary class data", Exp. Syst. Appl., 181, 115179. https://doi.org/10.1016/j.eswa.2021.115179.
- Raizada, R.D. and Lee, Y.S. (2013), "Smoothness without smoothing: why Gaussian naive Bayes is not naive for multisubject searchlight studies", PloS one, 8(7), e69566. https://doi.org/10.1371/journal.pone.0069566.
- Samui, P. and Sitharam, T.G. (2011), "Machine learning modelling for predicting soil liquefaction susceptibility", Nat. Hazard. Earth Syst. Sci., 11(1), 1-9. https://doi.org/10.5194/nhess-11-1-2011.
- Saranya, N. and Mythili, A. (2020), "Classification of soil and crop suggestion using machine learning techniques", IJERT, 9(02), 671-673.
- Seong, H., Son, H. and Kim, C. (2018), "A comparative study of machine learning classification for color-based safety vest detection on construction-site images", KSCE J. Civil Eng., 22(11), 4254-4262. https://doi.org/10.1007/s12205-017-1730-3.
- Smith, D. and Peng, W. (2009), "Machine learning approaches for soil classification in a multi-agent deficit irrigation control system", 2009 IEEE International Conference on Industrial Technology, 1-6.
- Song, J.U., Lee, J.S. and Yoon, H.K. (2019), "Application of electrical conductivity method for adsorption of lead ions by rice husk ash", Measure., 144, 126-134. https://doi.org/10.1016/j.measurement.2019.04.094.
- Taher, K.I., Abdulazeez, A.M. and Zebari, D.A. (2021), "Data mining classification algorithms for analyzing soil data", Asian J. Res. Comput., 17-28. https://doi.org/10.9734/ajrcos/2021/v8i230196.
- Yoon, H.K. (2020), "Relationship between aspect ratio and crack density in porous-cracked rocks using experimental and optimization methods", Appl. Sci., 10(20), 7147. https://doi.org/10.3390/app10207147.
- Yoon, H.K. and Lee, J.S. (2010), "Field velocity resistivity probe for estimating stiffness and void ratio", Soil Dyn. Earthq. Eng., 30(12), 1540-1549. https://doi.org/10.1016/j.soildyn.2010.07.008.