• Title/Summary/Keyword: Electrical charge

Search Result 2,500, Processing Time 0.033 seconds

Surface Chemical Aspects of Coagulation, Deposition, and Filtration Processes: Variation of Electrokinetic Potential at Metal Oxide-Water and Organic-Water Interfaces in the $Na^+$ and $Ca^{2+}$ Ion Solutions

  • Kim, Sung-Jae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.173-183
    • /
    • 2000
  • This study measured the zeta potential of both latex colloidal particles with carboxylate surface groups and glass beads (collectors) with silanol surface group employing various solution with different chemical characteristics. The results have been compared with the surface chemistry theory. The zeta potential of the particle and collector increased with increasing pH up to 5.0 regardless of the solution chemistry. For a monovalent electrolyte solution(sodium chloride solution) the zeta potential steadily increased until the pH reached 9.5. In contrast, little change in zeta potential was made between 5.0 and 9.5 for a divalent electrolyte solution (sodium chloride solution) the zeta potential steadily increased until the pH reached 9.5. In contrast, little change in zeta potential was made between 5.0 and 9.5 for a divalent electrolyte solution (calcium chloride solution). In other words, the more the pH decreases, the larger the effect of neutral salts, such as NaCl and CaCl$_2$, have on the ζ-potential values. In this study, the PZPC(point of zero proton condition) of the particle and collector occurred below a pH of 3.1, H(sup)+ and OH(sup)- acted as a PDI (potential determining ion), and Na(sup)+ acted as an IDI(indifferent ion). The magnitude of the negative ζ-potential values of the particle and collector monotonically increased as the concentrations of Na(sup)+ or Ca(sup)2+([Na(sup)+] or [Ca(sup)2+]) decreased (the values of pNa or pCa increased). In the case of latex particles, the ζ-potential should aproach zero (isoelectric point; IEP) asymptotically as the pNa approaches zero, while in the case of calcium chloride electrolyte, ζ-potential reversal may be expected to occur around 3.16$\times$10(sup)-2MCaCl$_2$(pCa=1.5). pH, valance and ionic strength can be used in various ways to improve the water treatment efficiency by modifying the charge characteristics of the particle and collector. Predictive capability is far less certain when EDL(electrical double layer) repulsive forces exist between the particle and collector.

  • PDF

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate (에폭시 개질 한 다관능 아크릴레이트를 포함하는 충격 저항성이 향상된 불포화폴리에스터 SMC (Sheet Molding Compound) 소재제조 및 그의 물성연구)

  • Jang, Jeong Beom;Kim, Taehee;Kim, Hye Jin;Lee, Wonjoo;Seo, Bongkuk;Kim, Yongsung;Kim, Changyoon;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.101-106
    • /
    • 2020
  • In this study, epoxy-modified acrylate was synthesized. The synthesized acrylate was added to the composition for sheet molding compound (SMC) in the range of 5 phr to 15 phr. The prepared SMC prepreg was molded at high temperature and pressure to produce a glass fiber reinforced composite. Physical properties such as tensile and impact strength of the composite were measured, respectively. Experimental data show that the composite with 5 phr of synthesized acrylate has 20% improved tensile strength and 12% improved impact strength than that of the reference sample.

An Adaptive Colorimetry Analysis Method of Image using a CIS Transfer Characteristic and SGL Functions (CIS의 전달특성과 SGL 함수를 이용한 적응적인 영상의 Colorimetry 분석 기법)

  • Lee, Sung-Hak;Lee, Jong-Hyub;Sohng, Kyu-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.641-650
    • /
    • 2010
  • Color image sensors (CIS) output color images through image sensors and image signal processing. Image sensors that convert light to electrical signal are divided into CMOS image sensor and CCD image sensor according to transferring method of signal charge. In general, a CIS has RGB output signals from tri-stimulus XYZ of the scene through image signal processing. This paper presents an adaptive colorimetric analysis method to obtain chromaticity and luminance using CIS under various environments. An image sensor for the use of colorimeter is characterized based on the CIE standard colorimetric observer. We use the method of least squares to derive a colorimetric characterization matrix between camera RGB output signals and CIE XYZ tristimulus values. We first survey the camera characterization in the standard environment then derive a SGL(shutter-gain-level) function which is relationship between luminance and auto exposure (AE) characteristic of CIS, and read the status of an AWB(auto white balance) function. Then we can apply CIS to measure luminance and chromaticity from camera outputs and AE resister values without any preprocessing. Camera RGB outputs, register values, and camera photoelectric characteristic are used to analyze the colorimetric results for real scenes such as chromaticity and luminance. Experimental results show that the proposed method is valid in the measuring performance. The proposed method can apply to various fields like surveillant systems of the display or security systems.

Study on Effective Point of Measurement for Parallel Plate Type ionization Chamber with Different Spacing (평행평판형 이온함의 두 전극간의 간격 변화에 따른 유효측정점에 관한 연구)

  • 신교철;윤형근
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2002
  • In this work, EPM (effective point of measurement) of parallel plate ionization chamber with three different spacing were investigated. If the plate separation is less than 2 mm one generally assumes that the effective point of measurement is just behind the front window of the parallel plate ionization chamber. For chamber with relatively large separation, such as the ones used for very accurate exposure measurements, this assumption breaks down and the EPM depends on plate separation and thickness of the front window. For parallel plate chambers, conventional theoretical analyses suggest that the EPM is the inner front wall and that it shifts towards the geometric centre of the chamber as the plate separation increases. The PP-IC (parallel plate ionization chamber) is fabricated using acrylic plate for the chamber medium and printed circuit board for electrical configuration. The various sizes of the sensitive volumes designed so far are 0.9, 1.9, and 3.1 cc. The gap between two electrodes ranges from 3, 6, and 10mm. Also the charge-to-voltage converter is designed to collect the electrons produced in the ionization chamber cavity. As the result of our experiment, the EPM shift was within 0.6 mm in photon beams and 0.4 mm to 2.5 mm in electron beams for the plate separation of 6 mm and 10 mm. EPM shifts towards the geometric center of the chamber as the plate separation increases.

  • PDF

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

The Cycling Performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery (리튬이온전지용 주석산화물이 도포된 흑연전극의 싸이클 성능)

  • Kang, Tae-Hyuk;Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2002
  • Tin oxide was coated on graphite particle by sol-gel method and an electrode with this material having microcrystalline structure for lithium ion battery was obtained by heat treatment in the range $400-600^{\circ}C$. The content of tin oxide was controlled within the range of $2.25wt\%\~11.1wt\%$. The discharge capacity increased with the content of tin oxide and also initial irreversible capacity increased. The discharge capacity of tin oxide electrode showed more than 350 mAh/g at the initial cycle and 300 mAh/g after the 30th cycle in propylene carbonate(PC) based electrolyte whereas graphite electrode without surface modification showed 140 mAh/g. When the charge and discharge rate was changed from C/5 to C/2, The discharge capacity of tin oxide and graphite electrode showed $92\%\;and\;77\%$ of initial capacity, respectively. It has been considered that such an enhancement of electrode characteristics was caused because lithium $oxide(Li_2O)$ passive film formed from the reaction between tin oxide and lithium ion prevented the exfoliation of graphite electrode and also reduced tin enhanced the electrical conduction between graphite particles to improve the current distribution of electrode.

The Evaluation and Fabrication of Photoconductor Sensor for Quality Assurance of Radiation Therapy Devices (방사선치료기기 정도관리를 위한 광도전체 센서 제작 및 평가)

  • Kang, Sang Sik;Noh, Sung Jin;Jung, Bong Jae;Noh, Ci Chul;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.565-569
    • /
    • 2016
  • Recently, a use of linear accelerator with a multi-leaf collimator(MLC) for radiation therapy is increasing. The importance of quality assurance (QA) for the linear accelerator is emphasized as the side effects of the inaccurate delivery of the radiation beam has been increased according to the high dose irradiation technique. In this study, The $HgI_2$ and $PbI_2$ photoconductor layer samples of $400{\mu}m$ thickness were fabricated using sedimentation method among particle-in-binder technology. From the fabricated samples, the electrical properties(dark current, output current, response properties and linearity) were investigated. From the experimental results, $HgI_2$ has good charge signal generation and linearity. Finally, from the signal response results about various thickness of $HgI_2$ sensor, the signal creation efficiency of $400{\mu}m$ thickness of $HgI_2$ sensor has the highest value and the excellent reproducibility below ${\pm}2.5%$.

Electrical Transport Properties of La2/3TiO2.84 Ceramic (La2/3TiO2.84 세라믹스의 전기전도특성)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.858-863
    • /
    • 2004
  • The thermoelectric power, dc conductivity and magnetic properties of the cubic L $a_{2}$ 3/Ti $O_{2.84}$ were investigated. The thermoelectric power was negative below 350 K. The measured thermoelectric power of L $a_{2}$ 3/Ti $O_{2.84}$ increased linearly with temperature, in agreement with model proposed by Emin and Wood, and was represented by A+BT. Temperature dependence indicates that the charge carrier in this material is a small polaron. L $a_{2}$ 3/Ti $O_{2.84}$ exhibited a cross over from variable range hopping to small polaron hopping conduction at a characteristic temperature well below room temperature. The low temperature do conduction mechanism in L $a_{2}$ 3/Ti $O_{2.84}$ was analyzed using Mott's approach. Mott parameter analysis gave values for the density of state at Fermi level [N( $E_{F}$)] = 3.18${\times}$10$^{20}$ c $m^{-3}$ e $V^{-1}$ . The disorder energy ( $W_{d}$) was found to be 0.93 eV, However, it was noted that the value of the disorder energy was much higher than the high temperature activation energy. The exist linear relation between log($\sigma$T)와 1/T in the range of 200 to 300 K, the activation energy for small polaron hopping was 0.15 eV.

Effects of Temperature and n-Alcohols (Propanol, Butanol, Pentanol and Hexanol) on the Micellization of Cetyltrimethylammonium Bromide (Cetyltrimethylammonium Bromide의 미셀화 현상에 미치는 온도 효과 및 n-알코올(프로판올, 부탄올, 펜탄올 및 헥산올) 효과)

  • Lee, Byeong Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.539-546
    • /
    • 1994
  • The critical micelle concentration(CMC) and the counterion binding $constant(\beta)$ at the CMC of cetyltrimethylammonium bromide(CTAB) in a series of aqueous solutions containing medium chain-length n-alcohols(Propanol, Butanol, Pentanol and Hexanol) have been determined from the concentration dependence of electrical conductance at serveral temperature from $17^{\circ}C\;to\;41^{\circ}C.$ Thermodynamic parameters $({\Delta}G^o_m,\;{\Delta}H^o_m,\;{\Delta}S^o_m,\;and\;{\Delta}C_p)$ associated with micelle formation of CTAB have been also estimated from the temperature dependence of CMC and $\beta$ values, and the significance of these parameters and their relation to the theory of micelle formation have been considered. The results show that an enthalpy-entropy compensation effect is usually observed for the micellization of CTAB. The effects of n-alcohols on the micellar properties (CMC and $\beta$) of CTAB solutions have been also investigated. The addition of n-alcohol to the CTAB solution in a small quantity decreases the CMC value and the counterion binding constant $(\beta)$ at the CMC, but the addition of n-alcohol in an excessive quantity increases the CMC values on the conterary. These results have been explained in terms of the effect of the micelle-solubilized alcohol on the micellar surface charge density.

  • PDF