• Title/Summary/Keyword: Electrical Substation System

Search Result 504, Processing Time 0.027 seconds

The result and improvement of the field test in Distribution Automation System (배전자동화 시스템 실계통 실증시험 결과 및 개선방안)

  • Cho, Nam-Hun;Ha, Bok-Nam;Park, Sang-Man
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.751-753
    • /
    • 1997
  • The field test system covers three substation, 25 distribution feeders and 125 automated switches. Many small electric vendors participated in this project. Although each device is a small prototype, it was designed to carry out all of the functions. In performing the project, KEPRI has gained valuable experience, through dealing with many difficult problem. This paper is depicted about many kind of those difficult problems.

  • PDF

Reliability Cost Evaluation of Power Distribution System with Superconducting Fault Current Limiter (초전도 한류기 적용시 배전계통의 신뢰도 비용 평가)

  • Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.266-270
    • /
    • 2014
  • In this paper, the effects of superconducting fault current limiter (SFCL) installed in power distribution system on reliability are evaluated and analyzed. The fault current will be decreased in power distribution system with SFCL because of the increased impedance of SFCL. The decreased fault current will improve the voltage drop of the bus of substation. The voltage drop is an important factor of power distribution system reliability. In this paper, improvement of reliability worth is analyzed when SFCLs are installed at the starting point in power distribution system. First, resistor-type SFCL model is used in PSCAD/EMTDC. Next, typical power distribution system is modeled. Finally, when the SFCLs with impedance 0.5 [${\Omega}$] are installed in feeder, power distribution system reliability is evaluated. Also, the improvement effect of reliability worth including the effect of voltage sag is analyzed using customer interruption cost according to whether or not SFCL is installed.

A Phase-shifter for Regulating Circulating Power Flow in a Parallel-feeding AC Traction Power System

  • Choi, Kyu-Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1137-1144
    • /
    • 2014
  • A parallel-feeding AC traction power system increases the power supply capacity and decreases voltage fluctuations, but the circulating power flow caused by the phase difference between the traction substations prevents the system from being widely used. A circuit analysis shows that the circulating power flow increases almost linearly as the phase difference increases, which adds extra load to the system and results in increased power dissipation and load unbalance. In this paper, we suggest a phase shifter for the parallel-feeding AC traction power system. The phase shifter regulates the phase difference and the circulating power flow by injecting quadrature voltage which can be obtained directly from the Scott-connection transformer in the traction substation. A case study involving the phase shifter applied to the traction power system of a Korean high-speed rail system shows that a three-level phase shifter can prevent circulating power flow while the phase difference between substations increases up to 12 degrees, mitigate the load unbalance, and reduce power dissipation.

Harmonic Frequency Analysis of Interlocking System for Rolling Stock Operation in Electrical Railroads (전기철도 구간에서의 철도차량 운행에 따른 연동장치 고조파 분석)

  • Baek, Jong-Hyen;Kim, Yong-Kyu;Oh, Seh-Chan;Lee, Kang-Mi;Jo, Hyun-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3610-3616
    • /
    • 2011
  • Electrical Railroads provide electric power, which can operate vehicles, via feeder wires. And the supplied current returns to the transformer substation through lines and ground net. The used load current depending on the operation of rail vehicles in the electric railway sections returns to the substation through a track which is a return circuit. The load current contains harmonics because of the power conversion equipment used in rolling stocks and such harmonic currents should not affect train control system. In this paper we present the test result in order to verify that the harmonics produced by the operation of rail vehicles in the newly built electric railway sections can affect interlocking systems. The test in question was performed in a linking section that trackside equipment under railway operating conditions and interlocking are linked in order to identify whether or not the interlocking fitted in a signal machine room can be affected by harmonics according to railway operation.

Compensation of Voltage Drop Using the TSC-SVC in Electric Railway Power Supply System (전기철도 AT 급전시스템에서의 TSC-SVC를 이용한 전압강하 보상)

  • 정현수;방성원;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • Recently, power quality problems in AC high-Speed Railway system have been raised, because heavy train and its higher speed are required in addition to new control system by using the Electronic devices. The installation/operation of the Series Capacitor(SC) has been only a device far voltage drop in power system up to now. However, the sufficient effectiveness of compensating In voltage drop has not been proved yet because of technical limitationf SC, and harmonic resonance is attracting a attention as one of new issues. Several problems are expected such as vocational problems of a traction substation, and overloading caused by a new construction of electric railway and the in transport. Therefore, extension of power feeding the fault in the traction substation should be also considered. So this paper represents the application of TSC-SVC on the electric railway power feeding system as a device of voltage compensation, and the simulations are executed through PSCAD/EMTDC.

A Study on the Economical PQMS of the Utility Distribution Power System (전력회사 관점의 배전계통 경제형 PQM 시스템 구축방안)

  • Park, Yong-Up;Lee, Keon-Hang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1523-1529
    • /
    • 2010
  • This paper describes the distribution power system econimical PQMS(Power quality monitoring system) of Utility. Recently, the korea power quality standard has been established based on the IEC Std. By IEC Std., the power quality assessment point is measured in PCC(Point of common coupling). In this case, the utility has to construct PQM system in all customer PCC point and the PQ meter cost would be very high in order to acquire the suitable data. Also the distribution system would be encounter the communication overload problem due to the huge data. Accordingly the utilities could not apply to PQM system in the distribution power system by the cost and communication problem. In this paper, the proposed economical PQMS has the voltage and current signal reiteration function and FFT operation function is transferred the server. Also the voltage and current measurement channels are minimized by a classified substation construction.

The Research into Connecting System for Aerial Bundled Cable in Distribution Line (ABC 배전 접속 시스템에 대한 연구)

  • 이용순;최경선;주종민;이철호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.495-498
    • /
    • 2001
  • The distribution line through which electricity is supplied from substation to customer generally varies by underground line and overhead line. In contrast that the underground line is shielded, the overhead lines do not have the shield layer. To overcome this weak point of the overhead lines, the aerial bundled cable(ABC) connection systems have been developed. The basic concept of the ABC connection system is the application of the underground cable system containing complete shield layer to the overhead cable system. The ABC system is the innovative technologies which enable the prevention of electric shocks, reduction of the maintenance charge and damage of the cable. This paper give a full detail of vertical connection system applied within a country.

  • PDF

The Development on Train Detection System and Performance Testing on Automatic Changeover System in Neutral Section (절연구간 자동통과 열차검지시스템 개발 및 성능시험)

  • Han, M.S.;Chang, S.H.;Shin, M.C.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.431-436
    • /
    • 2013
  • A neutral section is installed around feeding substation(SS) and sectioning post(SP) that M phase and T phase are isolated in AC feeding system. Electric Train under "Notch-OFF" is operated by inertia within the neutral section. It causes disturbing the operation of electric trains for speed drop and driver's mistakes. A automatic changeover system with thyristor recently have taken under development. In the paper, it is introduced the configuration of train detection system and performance testing on automatic changeover system..

Development of An Expert System to Decide the Resetting Area of Protective Distance Relay in Power Transmission Systems (송전계통 보호 거리계전기 재정정 영역 판정 전문가시스템 개발)

  • 최면송;민병운;김기화;현승호;이승재
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.437-443
    • /
    • 2003
  • In this paper an expert system is developed to decide the resetting area of protective devices in power transmission systems. A configuration change in power transmission networks from a substation extension such as new line or bus addition need resetting of protective devices around the point of configuration changes. To find the resetting area in complex power system is very difficult, especially when the distance protective relays are considered to be reset. The proposed expert system, in this paper to find the resetting area has many rules based on the changes of fault currents and apparent factors from the power system alteration. It solves the problem to find relay resetting area using the network information in the database and the rule-base. The case study shows a result of the problem to find relay resetting area in KEPCO system when there is any configuration change.

Analysis for Catenary Voltage of The ATs-Fed AC Electric Railroad System (단권변압기 교류전기철도 급전시스템의 전차선 전압해석)

  • 정현수;이승혁;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.493-499
    • /
    • 2003
  • This paper presents exact Autotransformers(ATs)-fed AC electric Railroad system modeling using constant current mode for locomotives. An AC electric railroad system is rapidly changing single-phase load, and at a feeding substation, 3-phase electric power is transferred to paired directional single-phase electric power. As the train moves along a section of line between two adjacent ATs. The proposed AC electric railroad system modeling method considers the line self-impedances and mutual-impedances. The constant current mode model objectives are to calculate the catenary and rail voltages with the loop equation. When there are more than one train in the AC electric railroad system, the principle of superposition applies and the only difference between the system analyses for one train. Filially, this paper shows the general equation of an AC electric railroad system, and that equation has no relation with trains number, trains position, and feeding distance.