• Title/Summary/Keyword: Electrical Contact

Search Result 2,093, Processing Time 0.024 seconds

Electrical Properties and Characterization of 3-Methylthiophene Impregnated Polyurethane films (3-Methylthiophene이 함유된 폴리우레탄 필름의 전기적 특성 연구)

  • Choi, Sei-Young;Choi, Kyo-Chang;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.234-243
    • /
    • 2004
  • The elastomeric and conductive polyurethane (PU) films were prepared by poly(propylene glycol) (PPG), toluene 2,4-diisocyanate, 3-methylthiophene (3-MT) at various preparation conditions, such as the reaction time, the $FeCl_3$ concentration, the weight ratio of the 3-MT to PU and the reaction temperature for the diffusion-oxidative reaction. The conductive poly (3-methylthiophene) (PMT) layers via the diffusion-oxidative reaction of 3-MT and ferric chloride were formed by immersing the film in organic solution of $FeCl_3$/ethyl acetate. The preparation conditions greatly affected the electrical conductivity of the 3-MT/PU composite. The effects of the reaction time and temperature on morphology and surface free energy were investigated by scanning electron microscopy (SEM) analysis and contact angle measurement, respectively. The conductivity of the composite was as high as 42 S/cm.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.543-550
    • /
    • 2011
  • Conductive SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol%) mixture of zirconium diboride (ZrB2) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS). Sintering was carried out for 5 min in an argon atmosphere at a uniaxial pressure and temperature of 50 MPa and $1500^{\circ}C$, respectively. The composite sintered at a heating speed of $25^{\circ}C$/min and an on/off pulse sequence of 12:2 was denoted as SZ12L. Composites SZ12H, SZ48H, and SZ10H were obtained by sintering at a heating speed of $100^{\circ}C$/min and at on/off pulse sequences of 12:2, 48:8, and 10:9, respectively. The physical, electrical, and mechanical properties of the SiC-$ZrB_2$ composites were examined and thermal image analysis of the composites was performed. The apparent porosities of SZ12L, SZ12H, SZ48H, and SZ10H were 13.35%, 0.60%, 12.28%, and 9.75%, respectively. At room temperature, SZ12L had the lowest flexural strength (286.90 MPa), whereas SZ12H had the highest flexural strength (1011.34 MPa). Between room temperature and $500^{\circ}C$, the SiC-$ZrB_2$ composites had a positive temperature coefficient of resistance (PTCR) and linear V-I characteristics. SZ12H had the lowest PTCR and highest electrical resistivity among all the composites. The optimum SPS conditions for the production of energy-friendly SiC-$ZrB_2$ composites are as follows: 1) an argon atmosphere, 2) a constant pressure of 50 MPa throughout the sintering process, 3) an on/off pulse sequence of 12:2 (pulse duration: 2.78 ms), and 4) a final sintering temperature of $1500^{\circ}C$ at a speed of $100^{\circ}C$/min and sintering for 5 min at $1500^{\circ}C$.

Nickel Film Deposition Using Plasma Assisted ALD Equipment and Effect of Nickel Silicide Formation with Ti Capping Layer (Plasma Assisted ALD 장비를 이용한 니켈 박막 증착과 Ti 캡핑 레이어에 의한 니켈 실리사이드 형성 효과)

  • Yun, Sang-Won;Lee, Woo-Young;Yang, Chung-Mo;Ha, Jong-Bong;Na, Kyoung-Il;Cho, Hyun-Ick;Nam, Ki-Hong;Seo, Hwa-Il;Lee, Jung-Hee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.19-23
    • /
    • 2007
  • The NiSi is very promising candidate for the metallization in 45 nm CMOS process such as FUSI(fully silicided) gate and source/drain contact because it exhibits non-size dependent resistance, low silicon consumption and mid-gap workfunction. Ni film was first deposited by using ALD (atomic layer deposition) technique with Bis-Ni precursor and $H_2$ reactant gas at $220^{\circ}C$ with deposition rate of $1.25\;{\AA}/cycle$. The as-deposited Ni film exhibited a sheet resistance of $5\;{\Omega}/{\square}$. RTP (repaid thermal process) was then performed by varying temperature from $400^{\circ}C$ to $900^{\circ}C$ in $N_2$ ambient for the formation of NiSi. The process temperature window for the formation of low-resistance NiSi was estimated from $600^{\circ}C$ to $800^{\circ}C$ and from $700^{\circ}C$ to $800^{\circ}C$ with and without Ti capping layer. The respective sheet resistance of the films was changed to $2.5\;{\Omega}/{\square}$ and $3\;{\Omega}/{\square}$ after silicidation. This is because Ti capping layer increases reaction between Ni and Si and suppresses the oxidation and impurity incorporation into Ni film during silicidation process. The NiSi films were treated by additional thermal stress in a resistively heated furnace for test of thermal stability, showing that the film heat-treated at $800^{\circ}C$ was more stable than that at $700^{\circ}C$ due to better crystallinity.

  • PDF

Comparison of Electrical Properties of β-Gallium Oxide (β-Ga2O3) Power SBDs with Guard Ring Structures (Guard Ring 구조에 따른 β-산화갈륨(β-Ga2O3) 전력 SBDs의 전기적 특성 비교)

  • Hoon-Ki Lee;Kyujun Cho;Woojin Chang;Jae-Kyoung Mun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.208-214
    • /
    • 2024
  • This reports the electrical properties of single-crystal β-gallium oxide (β-Ga2O3) vertical Schottky barrier diodes (SBDs) with a different guard ring structure. The vertical Schottky barrier diodes (V-SBDs) were fabricated with two types guard ring structures, one is with metal deposited on the Al2O3 passivation layer (film guard ring: FGR) and the other is with vias formed in the Al2O3 passivation layer to allow the metal to contact the Ga2O3 surface (metal guard ring: MGR). The forward current values of FGR and MGR V-SBD are 955 mA and 666 mA at 9 V, respectively, and the specific on-resistance (Ron,sp) is 5.9 mΩ·cm2 and 29 mΩ·cm2. The series resistance (Rs) in the nonlinear section extracted using Cheung's formula was 6 Ω, 4.8 Ω for FGR V-SBD, 10.7 Ω, 6.7 Ω for MGR V-SBD, respectively, and the breakdown voltage was 528 V for FGR V-SBD and 358 V for MGR V-SBD. Degradation of electrical characteristics of the MGR V-SBD can be attributed to the increased reverse leakage current caused by the guard ring structure, and it is expected that the electrical performance can be improved by preventing premature leakage current when an appropriate reverse voltage is applied to the guard ring area. On the other hand, FGR V-SBD shows overall better electrical properties than MGR V-SBD because Al2O3 was widely deposited on the Ga2O3 surface, which prevent leakage current on the Ga2O3 surface.

Effect of Thermal Budget of BPSG flow on the Device Characteristics in Sub-Micron CMOS DRAMs (서브마이크론 CMOS DRAM의 소자 특성에 대한 BPSG Flow 열처리 영향)

  • Lee, Sang-Gyu;Kim, Jeong-Tae;Go, Cheol-Gi
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.132-138
    • /
    • 1991
  • A comparision was made on the influence of BPSG flow temperatures on the electrical properties in submicron CMOS DRAMs containing two BPSG layers. Three different combinations of BPSG flow temperature such as $850^{\circ}C/850^{\circ}C,\;850^{\circ}C/900^{\circ}C,\;and\;900^{\circ}C/900^{\circ}C$ were employed and analyzed in terms of threshold, breakdown and isolation voltage along with sheet resistance and contact resistance. In case of $900^{\circ}C/900^{\circ}C$ flow, the threshold voltage of NMOS was decreased rapidly in channel length less than $0.8\mu\textrm{m}$ with no noticeable change in PMOS and a drastic decrease in breakdown voltages of NMOS and PMOS was observed in channel length less than and equal to $0.7\mu\textrm{m}$ and $0.8\mu\textrm{m}$, respectively. Little changes in threshold and breakdown voltages of NMOS and PMOS, however, were shown down to channel length of $0.6\mu\textrm{m}$ in case of $850^{\circ}C/850^{\circ}C$ flow. The isolation voltage was increased with decreasing BPSG flow temperature. A significant increase in the sheet resistance and contact resistance was noticeable with decreasing BPSG flow temperature from $900^{\circ}C$ to $850^{\circ}C$. All these observations were rationalized in terms of dopant diffusion and activation upon BPSG flow temperature. Some suggestions for improving contact resistance were made.

  • PDF

Introduction to the Thin Film Thermoelectric Cooler Design Theories (박막형 열전 냉각 모듈 제작을 위한 디자인 모델 소개)

  • Jeon, Seong-Jae;Jang, Bongkyun;Song, Jun Yeob;Hyun, Seungmin;Lee, Hoo-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.881-887
    • /
    • 2014
  • Micro-sized Peltier coolers are generally employed for uniformly distributing heat generated in the multi-chip packages. These coolers are commonly classified into vertical and planar devices, depending on the heat flow direction and the arrangement of thermoelectric materials on the used substrate. Owing to the strong need for evaluation of performance of thermoelectric modules, at present an establishment of proper theoretical model has been highly required. The design theory for micro-sized thermoelectric cooler should be considered with contact resistance. Cooling performance of these modules was significantly affected by their contact resistance such as electrical and thermal junction. In this paper, we introduce the useful and optimal design model of small dimension thermoelectric module.

Analysis of 2759 Pediatric Burn Patients: 2000-2004 (소아 화상 환자 2759명의 분석: 2000-2004)

  • Kim, Myong Cheol;Lee, Jong Wook;Chung, Jin Ah;Ko, Jang Hyu;Seo, Dong Kook;Oh, Suk Joon;Jang, Young Chul
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.581-586
    • /
    • 2006
  • Purpose: Pediatric burn still generates social problem leading to physical and mental sequelae for ages. We studied to help make a program for the prevention of pediatric burn. Methods: We analyzed retrospectically 2759 acute burn patients under the age of 15 years in recent 5years (January 2000 - December 2004). Results: 1553 males and 1226 females were investigated, with a male to female ratio of 1.25 : 1. The greatest number of burn patients were those with an age of 1 - 2 years(1435, 52%). Scalding burn was the most common cause of injury, which accounted for 1980 (71.8%) patients, followed by contact burns(286, 10.4%), flame burn(229, 8.3%), steam burn(141, 5.1%). Especially steam burn was the second cause of injury in the age under 1 year, while flame burn was the same in the age over 3 years. During recent 5 years, incidence of contact burn increased over twofold despite the others did not changed substantially. Variation of seasonal incidence is minimal and most of the patients(2545 cases, 92.2%) had burns of ${\leq}20%$ TBSA. The median hospital stay was 18.3 days, and the rate of operation was 35.4% with an high rate in electrical burn(70.6%), steam burn(68.8%), contact burn(65%). 27 patients died in this series, which yielded a mortality rate of 1%. Conclusion: We expect that these data will be used as a basis for prevention of pediatric burn.

A Study of Noncontact Heartbeat and Respiration Detection Using the Doppler Radar (도플러 레이더를 이용한 비접촉 방식의 심박 및 호흡 검출에 관한 연구)

  • Shin, Jae-Yeon;Cho, Sung-Pil;Jang, Byung-Jun;Park, Ho-Dong;Lee, Yun-Soo;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a 2.4 GHz doppler radar system consisting of a doppler radar sensor and a baseband module were designed to detect heart beat and respiration signal without direct skin contact. The doppler radar system emits RF signal of 2.4 GHz toward human chest, and then detects phase modulation of the reflected signal so as to investigate cardiopulmonary activities. The heartbeat and respiration signals acquired from I/Q channels of the doppler radar system are applied to the pre-processing circuit, the amplification circuit, and the offset circuit of the baseband module. The designed system was tested on mouse, rabbit and mankind, which have different range of heart rates and respiration signals, to evaluate detection accuracy of the system. ECG acquisition system and respiration transducer were used to generate the reference signal. In our experiments, a performance of detection were found to be high in the case that the subject stays still. In this paper, we confirmed that non-contact heart beat and respiration detection using the doppler radar has the possibility and limitation according to distance, cardiopulmonary activities, range of heart rates and respiration.

Electrical and Structure Properties of W Ohmic Contacts to $\textrm{In}_{x}\textrm{Ga}_{1-x}\textrm{N}$ (W/InGaN Ohmic 접촉의 전기적 구조적 특성)

  • Kim, Han-Gi;Seong, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1012-1017
    • /
    • 1999
  • Low resistance ohmic contacts to the Si-doped $\textrm{In}_{0.17}\textrm{Ga}_{0.83}\textrm{N}$(~$\times10^{19}\textrm{cm}^{-3}$) were obtained using the W metallization schemes. Specific contact resistance decreased with increasing annealing temperature. The lowest resistance is obtained after a nitrogen ambient annealing at $950^{\circ}C$ for 90 s, which results in a specific contact resistance of $2.75\times10^{-8}\Omega\textrm{cm}^{-3}$. Interfacial reactions and surface are analyzed using x-ray diffraction and scanning electron microscopy (SEM). The X-ray diffraction results show that the reactions between the W film and the $\textrm{In}_{0.17}\textrm{Ga}_{0.83}\textrm{N}$ produce a $\beta$-$W_2N$ phase at the interface. The SEM result shows that the morphology of the contacts is stable up to a temperature as high as $850^{\circ}C$. Possible mechanisms are proposed to describe the annealing temperature dependence of the specific contact resistance.

  • PDF