• Title/Summary/Keyword: Electrical Compensation

Search Result 1,759, Processing Time 0.021 seconds

A Study on Optimal PID Controller Design Ensure the Absolute Stability (절대안정도를 보장하는 최적 PID 제어기 설계에 관한 연구)

  • Cho, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.124-129
    • /
    • 2021
  • In this paper, an optimal controller design that guarantees absolute stability is proposed. The order of application of the thesis determines whether the delay time is included, and if the delay time is included, the delay time is approximated through the Pade approximation method. Then, the open loop transfer function for the process model and the controller transfer function is obtained, and the absolute stability interval is calculated by the Routh-Hurwitz discrimination method. In the last step, the optimal Proportional and Integral and Derivative(PID) control parameter value is calculated using a genetic algorithm using the interval obtained in the previous step. As a result, it was confirmed that the proposed method guarantees stability and is superior to the existing method in performance index by designing an optimal controller. If we study the compensation method for the delay time in the future, it is judged that better performance indicators will be obtained.

Approximate Multiplier With Efficient 4-2 Compressor and Compensation Characteristic (효율적인 4-2 Compressor와 보상 특성을 갖는 근사 곱셈기)

  • Kim, Seok;Seo, Ho-Sung;Kim, Su;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.173-180
    • /
    • 2022
  • Approximate Computing is a promising method for designing hardware-efficient computing systems. Approximate multiplication is one of key operations used in approximate computing methods for high performance and low power computing. An approximate 4-2 compressor can implement hardware-efficient circuits for approximate multiplication. In this paper, we propose an approximate multiplier with low area and low power characteristics. The proposed approximate multiplier architecture is segmented into three portions; an exact region, an approximate region, and a constant correction region. Partial product reduction in the approximation region are simplified using a new 4:2 approximate compressor, and the error due to approximation is compensated using a simple error correction scheme. Constant correction region uses a constant calculated with probabilistic analysis for reducing error. Experimental results of 8×8 multiplier show that the proposed design requires less area, and consumes less power than conventional 4-2 compressor-based approximate multiplier.

Design of Compensation Circuits for LED Fault in Constant Current Driving (정전류 구동에서 LED 고장 보상 회로 설계)

  • Lee, Kwang;Jang, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2022
  • Since brightness is proportional to the operating current, a method of connecting several LEDs in series and driving with a constant current source is widely used for driving circuits of LED lights. Because several LEDs are connected in series, if some LEDs open due to a fault, the current path is broken and all other LEDs connected in series are turned off. In this paper, we designed a circuit to solve this problem by connecting a Zener diode having a breakdown voltage of about 0.4V higher than the LED operating voltage in parallel with each LED to create a current bypass in case of LED failure. Through simulations and experiments, it was confirmed that the current of the Zener diode hardly flows when the LED is operating normally, and that the Zener diode stably operates as a current bypass when the LED fails.

A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs (단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.319-326
    • /
    • 2023
  • In this paper, simulation and experimental results are presented, including the implementation of a digital controller for robust output voltage control of a single-phase voltage source inverters (VSIs) and total harmonic distortion (T.H.D.v) analysis. Typically, the VSIs uses a proportional integral (PI) controller for the current controller on the inner loop and a proportional resonant (PR) controller for the voltage controller on the outer loop to control the output voltage. However, non-linear loads still produce high-order odd harmonic distortion. Therefore, in this paper, a proportional multiple resonance (PMR) controller with a resonance controller for odd harmonic frequencies is proposed to suppress harmonic distortion. Analyze the frequency response of controllers for VSI plants and design PMR controllers. Through simulation, the total harmonic distortion characteristics of the output voltage are compared and verified when PI and PMR are used as voltage controllers. Both linear and non-linear loading conditions were considered. Finally, the effectiveness of the PMR controller was demonstrated by applying it to a 3kW VSIs prototype.

A study on vertical alignment liquid crystal devices for electrically polarization controlled camera (전기적 편광 조절형 카메라를 위한 수직 배향형 액정 소자 연구)

  • Na-Kyung Lee;Hyeon-Sik Ahn;Sung-Min Kim;Min-Sang Kim;Seungseo Park;Yoonseuk Choi
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.512-517
    • /
    • 2023
  • In this study, we propose a liquid crystal-based polarization control technology that can control polarization by adjusting the voltage applied to the liquid crystal, and apply it to a Closed-circuit Television (CCTV) to transmit only the desired angle of polarized light. CCTV with conventional polarizing films cannot control polarization because they focus on backlight compensation, so light reflected from the water surface or highlights reflected from vehicles interfere with subject identification. However, the Vertical Alignment mode allows the polarization to be adjusted electrically, so that only the polarized light at the user's desired angle is transmitted, eliminating reflected highlights. The images obtained using this technique are optimized by computer software. Liquid crystal polarization panels, which can electrically control the polarization angle, transmittance, and polarization rate, have been applied to polarized image monitoring device to improve subject identification in conventional CCTV.

Estimation of Ultrasonic Attenuation Coefficients in the Frequency Domain using Compressed Sensing (압축 센싱을 이용한 주파수 영역의 초음파 감쇠 지수 예측)

  • Shim, Jaeyoon;Kim, Hyungsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.167-173
    • /
    • 2016
  • Compressed Sensing(CS) is the theory that can recover signals which are sampled below the Nyquist sampling rate to original analog signals. In this paper, we propose the estimation algorithm of ultrasonic attenuation coefficients in the frequency domain using CS. While most estimation algorithms transform the time-domain signals into the frequency-domain using the Fourier transform, the proposed method directly utilize the spectral information in the recovery process by the basis matrix without the completely recovered signals in the time domain. We apply three transform bases for sparsifying and estimate the attenuation coefficients using the Centroid Downshift method with Dual-reference diffraction compensation technique. The estimation accuracy and execution time are compared for each basis matrix. Computer simulation results show that the DCT basis matrix exhibits less than 0.35% estimation error for the compressive ratio of 50% and about 6% average error for the compressive ratio of 70%. The proposed method which directly extracts frequency information from the CS signals can be extended to estimating for other ultrasonic parameters in the Quantitative Ultrasound (QUS) Analysis.

Illuminant-adaptive color reproduction for a mobile display (주변광원에 적응적인 모바일 디스플레이에서의 색 재현)

  • Kim, Jong-Man;Son, Chang-Hwan;Cho, Sung-Dae;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.63-73
    • /
    • 2007
  • This paper proposes an illuminant-adaptive reproduction method using light adaptation and flare conditions for a mobile display. Displayed images in daylight are perceived as quite dark due to the light adaptation of the human visual system, as the luminance of a mobile display is considerably lower than that of an outdoor environment. In addition, flare phenomena decrease the color gamut of a mobile display and de-saturating the chroma. Therefore, this paper presents an enhancement method composed of lightness enhancement and chroma compensation. First, the ambient light intensity is measured using a lux-sensor, then the flare is calculated based on the reflection ratio of the display device and the ambient light intensity. To improve the perceived image, the image's luminance is transformed by linearization of the response to the input luminance according to the ambient light intensity. Next, the displayed image is compensated according to the physically reduced chroma, resulting from flare phenomena. This study presents a color reproduction method based on an inverse cone response curve and flare condition. Consequently, the proposed algorithm improves the quality of the perceived image adaptive to an outdoor environment.

The Design of the Class E Swiching Frequency Multiplier (스위칭 모드 E급 주파수 체배기 설계)

  • Roh, Hee-Jung;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.90-99
    • /
    • 2009
  • In this paper, we proposed the new class-E frequency multiplier design that include the highest efficient characteristics. The proposed frequency multiplier is designed for 5.8[GHz] output using the frequency multiplier about 2.9[GHz] input signal. And studying in this paper is for the design and the implementation of the class E frequency multiplier. For the result, the maximum highest efficient characteristics 32[%] which is with output power 24.5[dBm] and 8.5[dB], is shown with frequency multiplier for the 2.9/5.8[GHz] class E. And we applied the linear method to the implemented class E frequency multiplier. As a result, the output spectrum for the linear is upgrade to 12[dB], 12[dB], 13[dB] of the ACPR characteristics on the +11[MHz], +20[MHz], +30[MHz] offset frequency in the center frequency. The result is satisfied with the 3.83[%] of the lineared EVM for the 64-QAM modulated method with the 54[Mbps] transmission velocity. In this paper, we show that the good compensation result of the linearity and the efficiency through the digital pre-linear method of the distortion with the frequency multiplier. Therefore, we suggested the frequency multiplier method are applying to WLAN, cellular, PCS, WCDMA, and etc.

Estimation of Medical Ultrasound Attenuation using Adaptive Bandpass Filters (적응 대역필터를 이용한 의료 초음파 감쇠 예측)

  • Heo, Seo-Weon;Yi, Joon-Hwan;Kim, Hyung-Suk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.43-51
    • /
    • 2010
  • Attenuation coefficients of medical ultrasound not only reflect the pathological information of tissues scanned but also provide the quantitative information to compensate the decay of backscattered signals for other medical ultrasound parameters. Based on the frequency-selective attenuation property of human tissues, attenuation estimation methods in spectral domain have difficulties for real-time implementation due to the complexicity while estimation methods in time domain do not achieve the compensation for the diffraction effect effectively. In this paper, we propose the modified VSA method, which compensates the diffraction with reference phantom in time domain, using adaptive bandpass filters with decreasing center frequencies along depths. The adaptive bandpass filtering technique minimizes the distortion of relative echogenicity of wideband transmit pulses and maximizes the signal-to-noise ratio due to the random scattering, especially at deeper depths. Since the filtering center frequencies change according to the accumulated attenuation, the proposed algorithm improves estimation accuracy and precision comparing to the fixed filtering method. Computer simulation and experimental results using tissue-mimicking phantoms demonstrate that the distortion of relative echogenicity is decreased at deeper depths, and the accuracy of attenuation estimation is improved by 5.1% and the standard deviation is decreased by 46.9% for the entire scan depth.

Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target (FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.