• Title/Summary/Keyword: Electrical Compensation

Search Result 1,757, Processing Time 0.037 seconds

A Study on Pricision Positioning Control using a Fuzzy Friction Compensation (퍼지마찰력보상기를 이용한 정밀위치제어에 관한 연구)

  • Yun, S.H.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1045-1049
    • /
    • 1996
  • For the precision positioning and tracking control, the proper friction compensation is essential. The friction causes steady state error. The friction compensation based on the velocity and the controlling input or the desired velocity provides limited performance if the compensation value is fixed. In this paper, a friction compensation scheme using a fuzzy logic is proposed. The friction compensation amount is adjusted depending on the velocity and controlling input. The proposed fuzzy friction compensator with a pole-assignment controller is implemented in a linear positioning system. To illustrate the effectiveness of this scheme, computer simulations and experiments are carried out for the cases of no friction compensation, the proposed fuzzy friction compensation, and another friction compensation scheme based on velocity and control input, and the results are compared with each other.

  • PDF

Active/Reactive Compound Compensation in Distribution System

  • Sul, Yong-Tae
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 1997
  • In this paper th use of compensation based on a combination of active plus reactive power at distribution model system is proposed. The basic voltage-power relationships for the linearized case on an infinite bus are used and the compensation angle is defined based on the voltage magnitude response to small power injection. Compensation is supplied at several locations, and the system is subjected to varying fault scenarios, with its response observed under different system conditions. As number of control issues for a storage-based active/reactive power compensator as a bus voltage regulator are explored to compare the effectiveness of active/reactive again reactive-only compensation.

  • PDF

Nonlinearity-Compensation Extended Kalman Filter for Handling Unexpected Measurement Uncertainty in Process Tomography

  • Kim, Jeong-Hoon;Ijaz, Umer Zeeshan;Kim, Bong-Seok;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1897-1902
    • /
    • 2005
  • The objective of this paper is to estimate the concentration distribution in flow field inside the pipeline based on electrical impedance tomography. Special emphasis is given to the development of dynamic imaging technique for two-phase field undergoing a rapid transient change. Nonlinearity-compensation extended Kalman filter is employed to cope with unexpected measurement uncertainty. The nonlinearity-compensation extended Kalman filter compensates for the influence of measurement uncertainty and solves the instability of extended Kalman filter. Extensive computer simulations are carried out to show that nonlinearity-compensation extended Kalman filter has enhanced estimation performance especially in the unexpected measurement environment.

  • PDF

A Topological Transformation and Hierarchical Compensation Capacitor Control in Segmented On-road Charging System for Electrical Vehicles

  • Liu, Han;Tan, Linlin;Huang, Xueliang;Guo, Jinpeng;Yan, Changxin;Wang, Wei
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1621-1628
    • /
    • 2016
  • Experiencing power declines when the secondary coil is at the middle position between two primary coils is a serious problem in segmented on-road charging systems with a single energized segmented primary coil. In this paper, the topological transformation of a primary circuit and a hierarchical compensation capacitor control are proposed. Firstly, the corresponding compensation capacitors and receiving powers of different primary structures are deduced under the condition of a fixed frequency. Then the receiving power characteristics as a function of the position variations in systems with a single energized segmented primary coil and those with double segmented primary coils are analyzed comparatively. A topological transformation of the primary circuit and hierarchical compensation capacitor control are further introduced to solve the foregoing problem. Finally, an experimental prototype with the proposed topological transformation and hierarchical compensation capacitor control is carried out. Measured results show that the receiving power is a lot more stable in the movement of the secondary coil. It is a remarkable fact that the receiving power rises from 10.8W to 19.2W at the middle position between the two primary coils. The experimental are in agreement with the theoretical analysis.

Graphical Representation of the Instantaneous Compensation Power Flow for Single-Phase Active Power Filters

  • Jung, Young-Gook
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1380-1388
    • /
    • 2013
  • The conventional graphical representation of the instantaneous compensation power flow for single-phase active power filters(APFs) simply represents the active power flow and the reactive power flow which flowing between the power source and the active filter / the load. But, this method does not provide the information about the rectification mode and the compensation mode of APFs, especially, the loss for each mode was not considered at all. This is very important to understand the compensation operation characteristics of APFs. Therefore, this paper proposes the graphical representation of the instantaneous compensation power flow for single-phase APFs considering the instantaneous rectification mode and the instantaneous inversion mode. Three cases are verified in this paper - without compensation, with compensation of the active power 'p' and the fundamental reactive power 'q', and with compensation of only the distorted power 'h'. To ensure the validity of the proposed approach, PSIM simulation is achieved. As a result, we could confirm that the proposed approach was easy to explain the instantaneous compensation power flow considering the instantaneous rectification mode and the instantaneous inversion mode of APFs, also, Total Harmonic Distortion(THD)/Power Factor (P.F) and Fast Fourier Transform(FFT) analysis were compared for each case.

Design of DC Side Voltage and Compensation Analysis of THD for Shunt Power Quality Controller under System Load of Rectifier with R-L Load

  • Zhao, Guopeng;Han, Minxiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-40
    • /
    • 2015
  • For a shunt power quality controller (SPQC) the DC side voltage value which is closely related to the compensation performance is a significant parameter. Buy so far, very little discussion has been conducted on this in a quantitative manner by previous publications. In this paper, a method to design the DC side voltage of SPQC is presented according to the compensation performance in the single-phase system and the three-phase system respectively. First, for the reactive current and the harmonic current compensation, a required minimal value of the DC side voltage with a zero total harmonic distortion (THD) of the source current and a unit power factor is obtained for a typical load, through the equivalent circuit analysis and the Fourier Transform analytical expressions. Second, when the DC side voltage of SPQC is lower than the above-obtained minimal value, the quantitative relationship between the DC side voltage and the THD after compensation is also elaborated using the curve diagram. Hardware experimental results verify the design method.

Design of a Series Voltage Sag Compensation System in Transmission Line

  • Park, Hyen-Young;Kim, Yang-Mo;Lee, Gyo-Sung;Oh, Se-Ho;Park, Jung-Gyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.191-200
    • /
    • 2002
  • When power consumption increases, power supply must be efficient and reliable for good power quality. The studies on compensation system of power quality are processing actively. Voltage sag among of factors for power quality is generally PI dual control that voltage sag compensation is used. But this control is no more available since of 120[KHz] ripple rejection. So we proposed the control algorithm using PID control in 3-phase unbalanced power system and the series voltage compensator, when voltage sag occurs.

Optimal Shunt Compensation for Improving Voltage Stability and Transfer Capability in Metropolitan Area of the Korean Power System

  • Choi, YunHyuk;Lee, Byongjun;Kim, TaeKyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1502-1507
    • /
    • 2015
  • This paper deals with shunt compensation to eliminate voltage violation and enhance transfer capability, which is motivated towards implementation in the Korean power system. The optimal shunt compensation algorithm has demonstrated its effectiveness in terms of voltage accuracy and reducing the number of actions of reactive power compensating devices. The main shunt compensation devices are capacitor and reactor. Effects of control devices are evaluated by cost computations. The control objective at present is to keep the voltage profile of a key bus within constraints with minimum switching cost. A robust control strategy is proposed to make the control feasible and optimal for a set of power-flow cases that may occurs important event from system. Case studies with metropolitan area of the Korean power system are presented to illustrate the method.

Design of the Resonant Converter with a Double Sided LCC Compensation Circuit for Wireless Charger. (양면 LCC 보상 회로를 가진 무선 전력 충전기용 공진 컨버터의 설계)

  • Vu, Van-Binh;Tran, Duc-Hung;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.321-322
    • /
    • 2015
  • The aim of this paper is to propose a design method for the double-sided LCC compensation circuit for 6.6kW electric vehicle (EVs) wireless charger. The analysis and comparison with several compensation topologies such as SS, SP, PS, PP and the hybrid LCC compensation is presented. It has been found that the hybrid LCC compensation has superior performance in comparison with other topologies. The design procedure for the EV charger is presented and the PSIM simulation results are provided.

  • PDF

Intelligent Coordination Method of Multiple Distributed Resources for Harmonic Current Compensation in a Microgrid

  • Kang, Hyun-Koo;Yoo, Choel-Hee;Chung, Il-Yop;Won, Dong-Jun;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.834-844
    • /
    • 2012
  • Nonlinear electronic loads draw harmonic currents from the power grids that can cause energy loss, miss-operation of power equipment, and other serious problems in the power grids. This paper proposes a harmonic compensation method using multiple distributed resources (DRs) such as small distributed generators (DGs) and battery energy storage systems (BESSs) that are integrated to the power grids through power inverters. For harmonic compensation, DRs should inject additional apparent power to the grids so that certain DRs, especially operated in proximity to their rated power, may possibly reach their maximum current limits. Therefore, intelligent coordination methods of multiple DRs are required for efficient harmonic current compensation considering the power margins of DRs, energy cost, and the battery state-of-charge. The proposed method is based on fuzzy multi-objective optimization so that DRs can cooperate with other DRs to eliminate harmonic currents with optimizing mutually conflicting multi-objectives.