• Title/Summary/Keyword: Electrical Activity of the Heart

Search Result 77, Processing Time 0.024 seconds

The Prolonged Heart Rate Responses to Electrical Stimulation of Vagus Nerve in Dogs (경부미주신경의 전기자극에 의한 지속성 심박반응 및 이의 심전도적 고찰)

  • Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.6 no.2
    • /
    • pp.31-37
    • /
    • 1972
  • The right cervical vagus nerve was electrically stimulated for 30 sec, and 30 minutes recording cardiac rate responses and electrocardiogram. The main purposes of the present experiment are to determine effect of stimulation frequency on the maintenance of cardiac rate responses and to determine recovery time of sinus rhythm after asystole period followed by idioventricular rhythm during prolonged electrical stimulation of the vagus, and the optimal stimulation parameters for vagal stimulation were studied as well. The results obtained are summarized as follows: 1. The maximum negative chrontropic responses were obtained with the following ranges of electrical parameters. Intensity: 3V-7V, Frequency: 20/sec-60/sec, and pulse duration: 5 msec-20 msec. 2. Compared with the responses from sympathetic effectors, cardiac rate responses to electrical stimulation of vagus nerve were well maintained with all stimulation frequencies. 3. At all stimulation frequencies except 20/sec, sinus node started to take over primary pacemaker activity when cardiac rates were restored to about 38-40/min. 4. It was indicated that upper limit of idioventricular rhythm does not exceed 38-40/min. 5. With the stimulation parameter set of 20/sec-5 msec-3 V, sinus rhythm did not appear during 30 minutes of stimulation period. Therefore, this electrical parameter set appears to be optimal for elicitation of prolonged and maximum cardiac rate responses by vagal stimulation.

  • PDF

Wireless Three-Pad ECG System: Challenges, Design, and Evaluations

  • Cao, Huasong;Li, Haoming;Stocco, Leo;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.113-124
    • /
    • 2011
  • Electrocardiography (ECG) is a widely accepted approach for monitoring of cardiac activity and clinical diagnosis of heart diseases. Since cardiologists have been well-trained to accept 12-lead ECG information, a huge number of ECG systems are using such number of electrodes and placement configuration to facilitate fast interpretation. Our goal is to design a wireless ECG system which renders conventional 12-lead ECG information.We propose the three-pad ECG system (W3ECG). W3ECG furthers the pad design idea of the single-pad approach. Signals obtained from these three pads, plus their placement information, make it possible to synthesize conventional 12-lead ECG signals.We provide one example of pad placement and evaluate its performance by examining ECG data of four patients available from online database. Feasibility test of our selected pad placement positions show comparable results with respect to the EASI lead system. Experimental results also exhibit high correlations between synthesized and directly observed 12-lead signals (9 out of 12 cross-correlation coefficients higher than 0.75).

Effective Methods for Heart Disease Detection via ECG Analyses

  • Yavorsky, Andrii;Panchenko, Taras
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.127-134
    • /
    • 2022
  • Generally developed for medical testing, electrocardiogram (ECG) recordings seizure the cardiac electrical signals from the surface of the body. ECG study can consequently be a vital first step to support analyze, comprehend, and expect cardiac ailments accountable for 31% of deaths globally. Different tools are used to analyze ECG signals based on computational methods, and explicitly machine learning method. In all abovementioned computational simulations are prevailing tools for cataloging and clustering. This review demonstrates the different effective methods for heart disease based on computational methods for ECG analysis. The accuracy in machine learning and three-dimensional computer simulations, among medical inferences and contributions to medical developments. In the first part the classification and the methods developed to get data and cataloging between standard and abnormal cardiac activity. The second part emphases on patient analysis from entire ECG recordings due to different kind of diseases present. The last part represents the application of wearable devices and interpretation of computer simulated results. Conclusively, the discussion part plans the challenges of ECG investigation and offers a serious valuation of the approaches offered. Different approaches described in this review are a sturdy asset for medicinal encounters and their transformation to the medical world can lead to auspicious developments.

A Multilinear LDA Method of Tensor Representation for ECG Signal Based Individual Identification (심전도 신호기반 개인식별을 위한 텐서표현의 다선형 판별분석기법)

  • Lim, Won-Cheol;Kwak, Keun-Chang
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.90-98
    • /
    • 2018
  • A Multilinear LDA Method of Tensor Representation for ECG Signal Based Individual Identification Electrocardiogram signals, included in the cardiac electrical activity, are often analyzed and used for various purposes such as heart rate measurement, heartbeat rhythm test, heart abnormality diagnosis, emotion recognition and biometrics. The objective of this paper is to perform individual identification operation based on Multilinear Linear Discriminant Analysis (MLDA) with the tensor feature. The MLDA can solve dimensional aspects of classification problems in high-dimensional tensor, and correlated subspaces can be used to distinguish between different classes. In order to evaluate the performance, we used MPhysionet's MIT-BIH database. The experimental results on this database showed that the individual identification by MLDA outperformed that by PCA and LDA.

Development of the Electrodermal Activity Monitoring System for the Evaluation of Train Driver's Arousal State (기관사의 각성상태 평가를 위한 소형 피부전기활성도 측정 시스템 개발)

  • Lim, Min-Gyu;Lee, Young-Jae;Lee, Kang-Hwi;Kang, Seung-Jin;Kim, Kyeung-Nam;Park, Hee-Jung;Yang, Heui-Kyung;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1286-1293
    • /
    • 2014
  • Typically, studies through the simulation system have been progressed, because the evaluation of the driver's arousal state about the service of a actual train has risk of safety for the driver. When configured event same as the real in simulation system, the ability to cope with an accident situation may be the same each other. But the difference in the state of tension or arousal will occur. In this study, requested to cooperate with the railways in order to escape from these constraints, and the target of the experiment was to real engineer service. I was set about experiment when the train was stopped as safe as possible. As a result, the beta wave of EEG signals that representing complex calculations or anxiety is increased rapidly on the basis of a flag station from at the time of departure. The size of the electrodermal activity signal in response to movement of the body gave a noticeable. In terms of HRV, if the train approach a flag station gradually and the R-R interval is narrowed. So that the driver can be estimated as arousal state. In accordance with this study, if the quantitative standard of arousal state be based on the driver's biosignals will provide, it will be able to take advantage of development the system that would prevent train accidents caused by human error.

Role of Nitric Oxide Produced During Endotoxic Shock in Sympathetic Nervous Function (Endotoxin에 의해 생성된 혈관의 nitric oxide가 교감신경계에 미치는 영향)

  • 박관하
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.195-201
    • /
    • 1996
  • Endotoxic shock causes death in humans and animals via extreme hypoperfusion of peripheral organs. A massive production of nitric oxide (NO) both from the endothelical cells and smooth muscle cells has been proposed as a possible mechanism in this process. Since NO attenuated the contractility to vasoconstricting agents such as norepinephrine (NE) by directly acting on the smooth muscle cells, this mechanism was considered mainly as a postsynaptic mechanism. In this research it was investigated whether NO, thus released, also participates in the presynaptic events for the regulation of vascular tone in endotoxic shock. The role of NO was studied by adding NO donors or NO synthase inhibitor $N^\omega $methyl-L-arginine (NMA) in stimulated sympathetic nerves of the mesenteric vascular bed and the Langendorff heart of rats. Sodium nitroprusside (SNP), an NO donor, reduced the pressor responses of isolated mesenteric artery either to electrical stimulation or exogenously administered phenylephrine (PE). In this mesentery, although neither agent influenced NE release, in the presence of the adrenergic $\alpha_2$-receptor antagonist yohimbine, elecrical stimulation-evoked NE release was augumented by SNP. In the heart SNP facilitated the NE release induced by electrical stimulation, while NMA had no effect. From these results it is proposed that there exists a local reflex phenomenon in the junction between the sympathetic nerve terminals and the smooth muscle of resistance blood vessels; by which sympathetic responses are reduced by NO at the postjunctional level while NO facilitates NE release contributing to augumentation of sympathetic tone. All these facts suggest that NO produced during endotoxic shock has dual effects: whereas NO blunts the vasoconstrictive activity of NE at the postsynaptic level, NO presynaptically facilitates the release of NE from sympathetic nerve terminals.

  • PDF

Heart Rate Variability and Autonomic Activity in Patients Affected with Rett Syndrome (Rett 증후군 환자에서의 자율신경 활성도 및 심박수 변이도 측정)

  • Choi, Deok Young;Chang, Jin Ha;Chung, Hee Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.10
    • /
    • pp.996-1002
    • /
    • 2003
  • Purpose : In Rett syndrome patients, the incidence of sudden death is greater than that of the general population, and cardiac electrical instability including fatal cardiac arrhythmia is a main suspected cause. In this study, we are going to find out the possible cause of the higher risk of sudden death in Rett patients by the evaluation of heart rate variability, a marker of cardiac autonomic activity and corrected QT intervals. Methods : Diagnosis of Rett syndrome was made by molecular genetic study of Rett syndrome (MECP2 gene) or clinical diagnostic criteria of Rett syndrome. Heart rate variability and corrected QT intervals were measured by 24 h-Holter study in 12 Rett patients, and in 30 age-matched healthy children with chief complaints of chest pain or suspected heart murmurs. The were compared with the normal age-matched control. Results : Patients with total Rett syndrome, classic Rett syndrome, and Rett variants had significantly lower heart rate variability(especially rMSSD)(P<0.05) and longer corrected QT intervals than age-matched healthy children(P<0.05). Sympathovagal balance expressed by the ratio of high to low frequency(LF/HF ratio) also showed statistically significant differences between the three groups considered(P<0.05). Conclusion : A significant reduction of heart rate variability, a marker of autonomic disarray, suggests a possible explanation of cardiac dysfunction in sudden death associated with Rett syndrome.

Influence of Positional Changes of Arms and Legs to Electrocardiogram

  • Song, Joo-Eun;Song, Min-Ju;Kim, Ye-Sul;Yang, Ha-Nuel;Lee, Ye-Jin;Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.24 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Electrocardiogram (ECG) is a widely used method to diagnose electrical activity of heart. Although it is a reliable and easy method, ECG could be interfered by electrical signals. One of the interfering signals is electromyogram (EMG) that is caused by muscle contraction in any parts of the body except heart. To avoid the EMG noise, an examinee is advised to be relaxed on supine position while measuring ECG. Sometimes, patients who can't put their arms and legs down on bed due to some reasons such as cast on arms or legs necessarily have the EMG noise. But detailed information about how much of the noise could be induced by positional change of arms and legs has not been reported. Here we examined the noise by analyzing ECG data from 14 candidates, 7 males and 7 females. The ECG data was obtained using the standard 12 lead ECG. EMG noise was induced by raising arms and legs at $90^{\circ}$, $60^{\circ}$ or $30^{\circ}$. Because arms are located close to the heart, noise by the raised arms was analyzed toward left or right arm separately. All of the examinees showed similar pattern of the EMG noise. EMG noise by positional change of left or right arm was clearly monitored in different limb leads. Change of leg positions induced the noise that was monitored in aVF of augmented leads and II and III of limb leads. There was a difference in degree of the noise between male and female examinees. In addition to the EMG noise, decrease of PR interval was monitored in particular positional changes, which was prominent in male examinees. These results will enlarge fundamental understanding about EMG noise in ECG.

Reduction of Muscarinic $K^+$ Channel Activity by Transferrin in Ischemic Rat Atrial Myocytes

  • Park, Kyeong-Tae;Kang, Da-Won;Han, Jae-Hee;Hur, Chang-Gi;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.333-339
    • /
    • 2003
  • It has been demonstrated that an unidentified cytosolic factor(s) reduces $K_{ACh}$ channel function. Therefore, this study attempted to elucidate the cytosolic factor. Fresh cytosol isolated from normal heart (FC) depressed the $K_{ACh}$ channel activity, but cytosol isolated from the ischemic hearts (IC) did not modulate the channel function. Electrophorectic analysis revealed that a protein of ${\sim}80 kDa was markedly reduced or even lost in IC. By using peptide sequencing analysis and Western blot, this 80 kDa protein was identified as transferrin (receptor-mediated $Fe^{3+}$ transporter, 76 kDa). Direct application of transferrin (100 nM) to the cytoplasmic side of inside-out patches decreased the open probability ($P_o$, 12.7${\pm}6.4%, n=4) without change in mean open time (${\tau}_o$, $98.5{\pm}1.3$%, n=4). However, the equimolar apotransferrin, which is free of $Fe^{3+}$, had no effect on the channel activity (N*$P_o$, $129.1{\pm}13.5$%, n=3). Directly applied $Fe^{3+}$ (100 nM) showed results similar to those of transferrin (N*$P_o$: $21.1{\pm}3.9$%, n=5). However $Fe^{2+}$ failed to reduce the channel function (N*$P_o$, $106.3{\pm}26.8$%, n=5). Interestingly, trivalent cation La3+ inhibited N*$P_o$ of the channel ($6.1{\pm}3.0$%, n=3). Taken together, these results suggest that $Fe^{3+}$ bound to transferrin can modulate the $K_{ACh}$ channel function by its electrical property as a polyvalent cation.

Effects of Thyroid Hormone in vitro on the Electrical Activity of the Rabbit Heart Cell (토끼 심장세포의 전기적 활동에 대한 갑상선 호르몬의 효과)

  • Hong, Seong-geun;Yun, Hyo-in
    • Korean Journal of Veterinary Research
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 1987
  • To verify the direct effects of the thyroid hormone ($T_3$) on the rabbit heart, $T_3$-Tyrode solution in vitro was perfused on the normal atrial muscles and enzymatically isolated ventricular myocytes of the rabbit. All the experimental procedures were conducted at $35^{\circ}C$ and the same procedures were repeated after Ca. 120 minutes from the beginning of $T_3$-Tyrode perfusion. Compared to the state between the normal Tyrode solution and $T_3$-Tyrode solution, results were observed on the same cells by electrophysiological methods (conventional intracellular recording and whole cell patch clamping) as soon as possible. The results obtained were as follows : 1. Action potential duration (APD) on the left atrial muscle was reduced under the perfusion of $T_3$-Tyrode. 2. Absolute refractory Period was shortened by $T_3$-Tryrode perfusion. (117 msec./114 msec., 90 msec./78 msec.) 3. Maximal Ca currents ($i_{Ca}$) were decreased in single: ventricular myocytes under the $T_3$-Tyrode (2.98 nA) than under the normal Tyrode (6.65 nA) 4. On I-V relation, reversal potential was shifted to lower membrane potential and membrane potential showing maximal $i_{Ca}$was lowered from +10mV to -20mV by $T_3$ effect. 5. Above results were likely to explain that tachycardia in the hyperthyroid state was caused in part by the reduced repolarization phase and the reduced refractory period due to the decrease of the Ca current.

  • PDF