• Title/Summary/Keyword: Electric-Vehicles

Search Result 1,381, Processing Time 0.024 seconds

The development of forced fluid cooling induction motor for electric vehicle (전기자동차용 수냉식 유도전동기 개발)

  • Lee, K.J.;Kwon, J.L.;Kim, K.C.;Lee, J.I.;Lee, J.Y.;Kim, J.H.;Kim, Y.J.;Choi, G.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1015-1017
    • /
    • 2000
  • According to the importance of the earth environmental issues, the study of low emission vehicle is achieved actively throughout the world. It is studied for electric motor to be contented with the characteristics of electric and hybrid vehicles in this paper. It is represented for the result of design, analysis manufacture and test of the motor for electric vehicles.

  • PDF

Al-Cu Electrode Laser Welding for Rechargeable Battery (이차전지 전극용 Al-Cu의 레이저 용접)

  • Hwang, Seung Jun;Kim, Tae Wan;Jeon, Wook Sang;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, as electric vehicles and hybrid vehicles are widely used, the use of rechargeable batteries is increasing. Electric and hybrid cars are made up of hundreds to thousands of electric cells depending on the car model. And the assembly process of the cells and modules requires a variety of bonding process. Meanwhile, in order to connect several cells in series, Cu used as a cathode and Al of an anode must be bonded. In this paper, the characteristics of Al and Cu metals, laser types, characteristics and principles of welding lasers for welding of Cu and Al electrodes are introduced.

Demagnetization Diagnosis of Permanent Magnet Synchronous Motor Using Frequency Analysis at Standstill Condition

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.249-254
    • /
    • 2016
  • Recently, electric vehicles have got significant attention because it is more eco-friendly and efficient than internal combustion engine vehicles. Instead of an internal combustion engine, the electric vehicle has a motor for propulsion. The permanent magnet synchronous motor which has permanent magnet instead of field winding in the rotor has especially higher efficiency and power density than other types of motor. When the irreversible demagnetization is occurred, drivers are exposed to high risk of accident by the fault operation of motor. Therefore, the irreversible demagnetization of permanent magnet should be detected to reduce the risk of accident. In this study, the demagnetization diagnosis method based on the result of locked rotor test is proposed. Based on short measurement time, the proposed diagnosis method aims to detect the demagnetization fault when an electric vehicle is at a complete standstill. The proposed method is verified through the finite element analysis.

Simulation of Electric Vehicles Combining Structural and Functional Approaches

  • Silva, L.I.;Magallan, G.A.;De La Barrera, P.M.;De Angelo, C.H.;Garcia, G.O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.848-858
    • /
    • 2014
  • In this paper the construction of a model that represents the behavior of an Electric Vehicle is described. Both the mechanical and the electric traction systems are represented using Multi-Bond Graph structural approach suited to model large scale physical systems. Then the model of the controllers, represented with a functional approach, is included giving rise to an integrated model which exploits the advantages of both approaches. Simulation and experimental results are aimed to illustrate the electromechanical interaction and to validate the proposal.

Fuzzy-Sliding Mode Speed Control for Two Wheels Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail Khalil;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.499-509
    • /
    • 2009
  • Electric vehicles (EV) are developing fast during this decade due to drastic issues on the protection of environment and the shortage of energy sources, so new technologies allow the development of electric vehicles (EV) by means of electric motors associated with static converters. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. This paper presents the study of an hybrid Fuzzy-sliding mode control (SMC) strategy for the electric vehicle driving wheels, stability improvement, in which the fuzzy logic system replace the discontinuous control action of the classical SMC law. Our electric vehicle fuzzy-sliding mode control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency of the proposed control with no overshoot, the rising time is perfected with good disturbances rejections comparing with the classical control law.

A Study on a Substation Static Load Model Including the Mobility of a Railway Load (철도 부하의 이동성을 반영한 변전소 정태부하모델링 수립에 대한 연구)

  • Chang, Sang-Hoon;Youn, Seok-Min;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.315-323
    • /
    • 2015
  • Nowadays, it is expected that mobility loads such as electric railways and electric vehicles will be penetrated gradually and affect on the power system stability by their load characteristics. Various researches have been carried out about electric vehicles for the recent decade though the load of electric railway could be forecasted because of the specified path and timetable, is a field with a long historic background. Some precise 5th polynomial equations are required to analyze the power system stability considering mobility load to be increased in the immediate future while the electric railway dispatching simulator uses load models with constant power and constant impedance for the system analysis. In this paper, seasonal urban railway load models are established as the form of 5th polynomial equations and substation load modeling methods are proposed merging railway station load models and general load models. Additionally, load management effects by the load modeling are confirmed through the case studies, in which seasonal load models are developed for Seoul Subway Line No. 2, Gyeongui Line and Airport Railroad and the substation load change is analyzed according to the railway load change.

The investment point on cooperative innovation in EVs for the spoke-smart cities : focused on Nordic countries and Korea

  • Seo, Dae-Sung
    • The Journal of Economics, Marketing and Management
    • /
    • v.5 no.3
    • /
    • pp.1-11
    • /
    • 2017
  • E-infrastructural economy for ICT Living-Labs is a need for economic and cultural changes in various types of cars in accordance with the supply of the electric car. Depending on the number of cases by analyzing the supply and demand of electric vehicles among Korea and Northern Europe countries. it was indirectly proved that it makes economic growth. The research design is analyzed with the data and how to respond quickly to focus on the possibility of potential changes to the infrastructure realization and commercialization of government enterprises or electric cars through the ICT Living-Labs in Nordic countries. The data indicates that the leading commercialization emphasize on the development of the electric economic convergence and scalability for electric vehicle. When It shows the time of the infrastructure as ICT Living-Labs being delayed, it lowered growth target results for the development of the electric car industry in the future. All this is from the reason of opening the E-convergence economy over time. It is required that Korea should prepare E-convergence economy. Public regional energy should be present through the consistent selection of development for energy linking E-economy and E-trans distribution. Korea needs to be many difficulties in building the E- infrastructure for ICT Living-Labs. Unlike the Northern Europe it is to prepare the active support of both government and business. The role of the government discovers that the power generation through the quick selection of the industry, as well as to connect with the growth of the smart cities with the EVs industry.

Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data (전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구)

  • SeungMo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.385-391
    • /
    • 2023
  • As the use of electric vehicles has increased to minimize carbon emissions, the analyzing the state and performance of lithium-ion batteries that is instrumental in electric vehicles have been important. Comprehensive analysis using not only the voltage, current and temperature of the battery pack, which can affect the condition and performance of the battery, but also the driving data and charging pattern data of the electric vehicle is required. Therefore, a thorough analysis is imperative, utilizing electric vehicle operation data, charging pattern data, as well as battery pack voltage, current, and temperature data, which collectively influence the condition and performance of the battery. Therefore, collection and preprocessing of battery data collected from electric vehicles, collection and preprocessing of data on driver driving habits in addition to simple battery data, detailed design and modification of artificial intelligence algorithm based on the analyzed influencing factors, and A battery analysis and evaluation model was designed. In this paper, we gathered operational data and battery data from real-time electric buses. These data sets were then utilized to train a Random Forest algorithm. Furthermore, a comprehensive assessment of battery status, operation, and charging patterns was conducted using the explainable Artificial Intelligence (XAI) algorithm. The study identified crucial influencing factors on battery status, including rapid acceleration, rapid deceleration, sudden stops in driving patterns, the number of drives per day in the charging and discharging pattern, daily accumulated Depth of Discharge (DOD), cell voltage differences during discharge, maximum cell temperature, and minimum cell temperature. These factors were confirmed to significantly impact the battery condition. Based on the identified influencing factors, a battery analysis and evaluation model was designed and assessed using the Random Forest algorithm. The results contribute to the understanding of battery health and lay the foundation for effective battery management in electric vehicles.

Study for Zero Emission Vehicle Technology : Current Status and Recent Trends (무공해 자동차 기술의 현 상태와 발전방향)

  • Lee, Sunguk;Park, Byungjoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.377-384
    • /
    • 2019
  • To cope with severe global warming and environmental pollution problem regulations on automobile emissions and fuel efficiency has been tightened around the world. Therefore zero emission vehicles which do not use fossil fuels such as electric vehicles have attracted attention by government and both industry and academia at developed countries. In the market, electric vehicles are being selected from more and more consumers because of technological advances and policy support. Recently another zero emission vehicle, hydrogen fuel cell vehicle, is drawing attention and is expected to become deployed widely. This paper reviews technology, current status and global trends of zero emission vehicle. The economical analysis of zero emission vehicles are also presented.