DOI QR코드

DOI QR Code

Al-Cu Electrode Laser Welding for Rechargeable Battery

이차전지 전극용 Al-Cu의 레이저 용접

  • Hwang, Seung Jun (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Tae Wan (Department of Materials Science and Engineering, University of Seoul) ;
  • Jeon, Wook Sang (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Jae Pil (Department of Materials Science and Engineering, University of Seoul)
  • 황승준 (서울시립대학교 신소재공학과) ;
  • 김태완 (서울시립대학교 신소재공학과) ;
  • 전욱상 (서울시립대학교 신소재공학과) ;
  • 정재필 (서울시립대학교 신소재공학과)
  • Received : 2019.12.06
  • Accepted : 2019.12.28
  • Published : 2019.12.30

Abstract

Recently, as electric vehicles and hybrid vehicles are widely used, the use of rechargeable batteries is increasing. Electric and hybrid cars are made up of hundreds to thousands of electric cells depending on the car model. And the assembly process of the cells and modules requires a variety of bonding process. Meanwhile, in order to connect several cells in series, Cu used as a cathode and Al of an anode must be bonded. In this paper, the characteristics of Al and Cu metals, laser types, characteristics and principles of welding lasers for welding of Cu and Al electrodes are introduced.

Keywords

References

  1. M. Kang, W. S. Choi, and S. Kang, "Ultrasonic and Laser Welding Technologies on Al/Cu Dissimilar Materials for the Lithium-Ion Battery Cell or Module Manufacturing", Journal of Welding and Joining, 37(2), 52 (2019). https://doi.org/10.5781/JWJ.2019.37.2.8
  2. M. Kraetzsch, J. Standfuss, A. Klotzbach, J. Kaspar, B. Brenner, and E. Beyer, "Laser beam welding with high-frequency beam oscillation: welding of dissimilar materials with brilliant fiber lasers", Phys. Procedia., 12, 142 (2011). https://doi.org/10.1016/j.phpro.2011.03.018
  3. M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, "Watt?Class Green (530nm) and Blue (465nm) Laser Diodes", Phys. Status Solidi A, 215, 1 (2018).
  4. N. Speker, P. Haug, S. Feuchtenbeiner, T. Hesse, and D. Havrilla, "BrightLine weld-spatter reduced high speed welding with disk lasers", Proc. High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VII, Society of Photo-Optical Instrumentation Engineers (SPIE), 10525, 105250C (2018).
  5. R. S. Mishra and Z. Y. Ma, "Friction Stir Welding and Processing", Materials Science and Engineering: R: Reports, 50, 1 (2005). https://doi.org/10.1016/j.mser.2005.07.001
  6. D. H. Jung and J. P. Jung, "Aluminum alloys and their joining methods", J. Microelectron. Packag. Soc., 25(2), 9 (2018). https://doi.org/10.6117/KMEPS.2018.25.2.009
  7. S. J. Lee, K. D. Choi, B. H. Park, J. D. Kim, and J. Suh, "Weldability of aluminum alloys laser welding for with highpower disk laser", Journal of the Korean Society of Marine Engineering, 41(7), 638 (2017). https://doi.org/10.5916/jkosme.2017.41.7.638
  8. C. Huntington and T. W. Eagar, "Laser welding of aluminum and aluminum alloys", WELDING J., 62(4), 105 (1983).
  9. M. Schweier, J. F. Heins, M. W. Haubold, and M. F. Zaeh, "Spatter formation in laser welding with beam oscillation", Phys. Procedia., 41, 20 (2013). https://doi.org/10.1016/j.phpro.2013.03.047
  10. D. H. Kim, "Waveability and plane wave of light", Laser Processing, pp.77, Kyungmoon, Seoul (2005).
  11. A. Lisiecki, "Welding of titanium alloy by Disk laser", Laser Technology 2012: Applications of Lasers, 8703, 87030T (2013).
  12. S. Katayama, "Characteristics of laser welding", Handbook of laser welding technologies, pp.3-16, Woodhead Publishing, Oxford (2013)
  13. R. S. Sharma and P. Molian, "Weldability of advanced high strength steels using an Yb: YAG disk laser", Journal of Materials Processing Technology, 211(11), 1888 (2011). https://doi.org/10.1016/j.jmatprotec.2011.06.009
  14. D. Janicki, "Disk Laser Welding of Armor Steel/Spawanie Laserem Dyskowym Stali Pancernej", Archives of Metallurgy and Materials, 59(4), 1641 (2014). https://doi.org/10.2478/amm-2014-0279
  15. A. Matsunawa, N. Seto, J. D. Kim, M. Mizutani, and S. Katayama, "Dynamics of keyhole and molten pool in high-power CO2 laser welding", High-Power Lasers in Manufacturing, 3888, 34 (2000). https://doi.org/10.1117/12.377006
  16. M. Kutsuna and L. Chen, "Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel", First International Symposium on High-Power Laser Macroprocessing, 4831, 341 (2003).
  17. W. W. Chow, S. W. Koch, and M. I. Sargent, "Semiconductor Laser Diodes", Semiconductor-laser physics, pp.1-33, Springer Science & Business Media, Berlin (2012).
  18. W. Koechner, "Thermal lensing in a Nd: YAG laser rod", Applied optics, 9(11), 2548 (1970). https://doi.org/10.1364/AO.9.002548
  19. K. Loffler, "4-Developments in disk laser welding", Handbook of laser welding technologies, pp.73-102, Woodhead Publishing, Oxford (2013).