• Title/Summary/Keyword: Electric-Vehicles

Search Result 1,400, Processing Time 0.025 seconds

Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries (리튬이차전지의 과충전에 의한 열폭주 현상의 이해)

  • Minseo Lee;Ji-sun You;Kyeong-sin Kang;Jaesung Lee;Sungyool Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.55-72
    • /
    • 2024
  • Secondary batteries are used as an essential renewable energy source in our lives, such as electric vehicles and energy storage systems (ESS), as an alternative to fossil fuels due to global warming. However, cases of battery fires and explosions have been reported due to thermal runaway in secondary batteries due to various causes such as overdischarge, high-speed charging and discharging, and external short circuit, and great efforts are being made to find solutions suitable for each cause. In particular, as cases presumed to be caused by the overcharging process have been reported, this review will examine the chemical reactions of secondary batteries that can occur during the overcharging process and discuss risk investigation methods to check and prevent them.

A Study on Safety Impact Assessment of a Multiple Hydrogen Refueling Station (다차종 동시 충전을 위한 수소 스테이션의 안전 영향 평가 연구)

  • Boo-Seung Kim;Kyu-Jin Han;Seung-Taek Hong;Youngbo Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.85-99
    • /
    • 2024
  • As the proliferation of hydrogen electric vehicles accelerates, there is observed diversification in hydrogen refueling station models. This diversification raises safety concerns for different types of stations. This study conducted a quantitative risk assessment of a multi-vehicle hydrogen station, capable of simultaneously refueling cars, buses, and trucks. Utilizing Gexcon's Effects&Riskcurves Software, scenarios of fire and explosion due to hydrogen leaks were assessed. The study calculated the impact distances from radiative heat and explosion overpressure, and measured risks to nearby buildings and populations. The largest impact distance was from fires and explosions at dispensers and high-pressure storage units. High-pressure storage contributes most significantly to personal and societal risk. The study suggests that conservative safety distances and proper protective measures for these facilities can minimize human and material damage in the event of a hydrogen leak.

Study on Dust Explosion Characteristics of Acetylene Black (Acetylene Black의 분진폭발 특성 연구)

  • Jae Jun Choi;Dong Myeong Ha
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.38-43
    • /
    • 2024
  • Recently, with the expanding market for electronic devices and electric vehicles, secondary battery usage has been on the rise. Lithium-ion batteries are particularly popular due to their fast charging times and lightweight nature compared to other types of batteries. A secondary battery consists of four components: anode, cathode, electrolyte, and separator. Generally, the positive and negative electrode materials of secondary batteries are composed of an active material, a binder, and a conductive material. Acetylene Black (AB) is utilized to enhance conductivity between active material particles or metal dust collectors, preventing the binder from acting as an insulator. However, when recycling waste batteries that have been subject to high usage, there is a risk of fire and explosion accidents, as accurately identifying the characteristics of Acetylene Black dust proves to be challenging. In this study, the lower explosion limit for Acetylene Black dust with an average particle size of 0.042 ㎛ was determined to be 153.64 mg/L using a Hartmann-type dust explosion device. Notably, the dust did not explode at values below 168 mg, rendering the lower explosion limit calculation unfeasible. Analysis of explosion delay times with varying electrode gaps revealed the shortest delay time at 3 mm, with a noticeable increase in delay times for gaps of 4 mm or greater. The findings offer fundamental data for fire and explosion prevention measures in Acetylene Black waste recycling processes via a predictive model for lower explosion limits and ignition delay time.

Characteristic Analysis of Lithium-ion Battery and Lead-acid Battery using Battery Simulator (배터리 시뮬레이터를 이용한 리튬이온 배터리와 납축전지 특성분석)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Recently, secondary batteries, commonly known as rechargeable batteries, find widespread applications across various industries. Particularly valued for their compact and lightweight characteristics, they play a crucial role in diverse portable electronic devices such as smartphones, laptops, and tablets, offering high energy density and efficient charge-discharge capabilities. Moreover, they serve as vital components in electric vehicles and contribute significantly to the field of renewable energy as part of Energy Storage Systems(ESS). However, despite advancements in this technology, issues such as reduced lifespan, cracking, damage, and even the risk of fire can arise due to excessive charging and discharging of secondary batteries. To address these challenges, Battery Management System(BMS) are employed to protect against overcharging and improve overall performance. Nevertheless, understanding the protective range settings of BMS using lithium-ion batteries, the most commonly used secondary batteries, and lead-acid batteries can be challenging. Therefore, this paper aims to utilize a battery charge-discharge tester and simulator to investigate the charging and discharging characteristics of lithium-ion batteries and lead-acid batteries, addressing the associated challenges of reduced lifespan, cracking, damage, and fire hazards in secondary batteries.

Sintering Behavior of Borate-Based Glass Ceramic Solid Electrolytes for All-Solid Batteries (전고체전지용 붕산염 유리 세라믹 고체 전해질의 조성비에 따른 소결 특성 연구)

  • Jeong Min Lee;Dong Seok Cheong;Sung Hyun Kang;Tirtha Raj Acharya;Eun Ha Choi;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.445-450
    • /
    • 2024
  • The expansion of lithium-ion battery usage beyond portable electronic devices to electric vehicles and energy storage systems is driven by their high energy density and favorable cycle characteristics. Enhancing the stability and performance of these batteries involves exploring solid electrolytes as alternatives to liquid ones. While sulfide-based solid electrolytes have received significant attention for commercialization, research on amorphous-phase glass solid electrolytes in oxide-based systems remains limited. Here, we investigate the glass transition temperatures and sintering behaviors by changing the molecular ratio of Li2O/B2O3 in borate glass comprising Li2O-B2O3-Al2O3 system. The glass transition temperature is decreasing as increasing the amount of Li2O. When we sintered at 450℃, just above the glass transition temperature, the samples did not consolidate well, while the proper sintered samples could be obtained under the higher temperature. We successfully obtained the borate glass ceramics phases by melt-quenching method, and the sintering characteristics are investigated. Future studies could explore optimizing ion conductivity through refining processing conditions, adjusting the glass former-to-modifier ratio, and incorporating additional Li salt to enhance the ionic conductivity.

Study on the reduction of stick-slip noise in acrylonitrile butadiene styrene-based plastics using non-polar additives to reduce friction (마찰 저감을 위한 비극성 첨가제에 따른 acrylonitrile butadiene styrene계 플라스틱의 stick-slip 이음 저감 연구)

  • Sangjun Yeo;Yewon Jeong;Sunguk Choi;Hyojun Kim;Geonwook Park;Minyoung Shon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.49-59
    • /
    • 2024
  • Recently, the electric vehicle market is gradually growing due to strengthened environmental regulations and high oil prices. also, in internal combustion engine vehicles, the sensitivity of Buzz, Squeak, Rattle (BSR) noise is increasing as engine Noise, Vibration, and Harshness (NVH)-related noise is reduced and technology for shielding noise coming from outside is developed. In this study, the stick-slip noise that occurs in Panoramic Curved Display (PCD) of automobile was analyzed for the correlation between the surface energy of polymer plastic and the polar component. For polar polymer materials, Acrylonitrile Butadiene Styrene (ABS) and PolyCarbonate-Acrylonitrile Butadiene Styrene (PC-ABS), compound materials were fabricated and evaluated. As a result, when the polar component of the polymer plastic was 3.86 mN/m or higher, stick-slip motion occurred, and as the absolute transition slope increased in the friction behavior over time, the possibility of stick-slip noise increased and the value of the friction coefficient The greater the difference, the greater the strength of the stick-slip noise.

Design Study of Digital Map Architecture for AAV (미래형 항공기체(AAV)용 전자지도 아키텍처 설계 연구)

  • Kyung-Chul Choi;Ji-Hun Kim;Nak-Min Choi;Gyong-Hoon Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.393-399
    • /
    • 2024
  • The digital map computer for advanced air vehicles (AAV) must be high-performance, lightweight, portable, and modular. It should receive data on terrain, weather, and obstacles from external modules to display digital maps accurately. This necessitates robust communication capabilities with external devices via an Ethernet interface and the ability to output digital map visuals clearly through an high-defintion multimedia Interface (HDMI) or digital visual interface (DVI) interface. This paper presents the design of both hardware and software architecture that fulfills these critical requirements for an AAV digital map system. Additionally, it establishes the minimum specifications needed and verifies the suitability of the designed digital map computer through rigorous performance measurements and testing. By ensuring these standards, the digital map computer can reliably support the complex navigational needs of AAV, enhancing operational efficiency and safety.

Low price type inspection and monitoring system of lithium ion batteries for hybrid vessels (하이브리드 선박용 리튬 배터리의 저가형 감시시스템 구현)

  • Kwon, Hyuk-joo;Kim, Min-kwon;Lee, Sung-geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • Batteries are used for main power engine in the fields such as mobiles, electric vehicles and unmanned submarines, for starter and lamp driver in general automotive, for emergency electric source in ship. These days, lead-acid and the lithium ion batteries are increasingly used in the fields of the secondary battery, and the lead-acid battery has a low price and safety comparatively, The lithium ion battery has a high energy density, excellent output characteristics and long life, whereas it has the risk of explosion by reacting with moisture in the air. But Recently, due to the development of waterproof, fireproof, dustproof technology, lithium batteries are widely used, particularly, because their usages are getting wider enough to be used as a power source for hybrid ship and electric propulsion ship, it is necessary to manage more strictly. Hybrid ship has power supply units connected to the packets to produce more than 500kWh large power source, and therefore, A number of the communication modules and wires need to implement the wire inspection and monitor system(WIIMS) that allows monitoring server to transmit detecting voltage, current and temperature data, which is required for the management of the batteries. This paper implements a low price type wireless inspection and monitoring system(WILIMS) of the lithium ion battery for hybrid vessels using BLE wireless communication modules and power line modem( PLM), which have the advantages of low price, no electric lines compared to serial communication inspection systems(SCIS). There are state of charge(SOC), state of health(SOH) in inspection parts of batteries, and proposed system will be able to prevent safety accidents because it allows us to predict life time and make a preventive maintenance by checking them at regular intervals.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Indicators and Planning Features of Ecologically Based Urban Regeneration -Cases from Hamburg, Germany and Copenhagen, Denmark (생태기반형 도시재생의 계획지표 및 특성에 관한 연구 -독일 함부르크와 덴마크 코펜하겐 사례를 중심으로)

  • Rhee, Bum-Hun;Chang, Dong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.158-166
    • /
    • 2018
  • Contrary to urban development, urban regeneration is a process of land development through conservation, restoration, and management. In particular, ecologically based urban regeneration is an attempt to improve the quality of life in an area, establish a stable settlement space, and revitalize the local economy by considering the ecological environment. In this regard, the objectives of this study were to establish theoretical concepts and analyze the successful foreign cases of ecologically based urban regeneration, and propose a direction of socio-economic regeneration along with the physical-environmental regeneration of urban areas in Korea. The study results suggest the following. First, strategies must be developed to coordinate public transportation, such as buses and subways, by considering the importance of bicycle riders, along with the sustainable-commuting system. Second, both the importance of planning parks and trails around water systems in various scales while maintaining the existing natural environment as well as using natural elements, such as electric vehicles and wind-power generation systems, were emphasized. Third, urban regeneration for increased energy efficiency requires specific architectural planning and facilities. Fourth, education and research for easy access by the public, as well as public-private partnership, will be needed in the regeneration process.