• 제목/요약/키워드: Electric insulation material

검색결과 252건 처리시간 0.032초

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권2호
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.

혼합가스의 이물 존재시 절연 특성 연구 (A study of dielectric strength and insulating property for particle contamination Under SF6/N2 Mixture)

  • 정동훈;우수열;서경보;김진호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1262-1263
    • /
    • 2011
  • Sulfur hexafluoride is the most commly used insulation gas in electrical systems. Gas insulated systems are widely used in the electric power industry for transmission and distribution of electrical energy. When $SF_6$ was first discovered, the potential application was only considered for insulation because of good dielectric properties. But the widespread use of $SF_6$ gas by electric power and other industries has led to increase concentrations of $SF_6$ gas in the atmosphere. This concern as to possible effects on global warming because $SF_6$ is a potent greenhouse gas. That's why firstly we studied uniform and nonuniform field property by mixing $SF_6$ and N2 gas. This paper presents the dielectric strength and insulating property for particle contamination under $SF_6/N_2$ mixtures. Two types of mixed gases(50% $SF_6$_50%$N_2$, 20% $SF_6$_80%$N_2$) were applied. We performed tests for the length and shape of particle. Test gas pressure is from 0.3 to 0.7 Mpa. The study was conducted to develop environment-friendly insulating material for GIS that can reduce $SF_6$ gas and make a design criteria for mixtures.

  • PDF

액체질소 내에서 뇌 임펄스전압에 대한 압력별 GFRP의 절연파괴 특성 분석 (A Study on the Dielectric Characteristics of GFRP in LN2 under Lightning Impulse Voltage According to Pressure)

  • 홍종기;허정일;남석호;강형구
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1471-1476
    • /
    • 2012
  • A study on the dielectric characteristics of the Glass Fiber Reinforced Plastic (GFRP) is important for designing a reliable high voltage superconducting machines such as transmission superconducting fault current limiters, superconducting cables, and superconducting transformers. In this paper, dielectric experiments of the GFRP under lightning impulse voltage are conducted in liquid nitrogen($LN_2$) according to various experimental conditions such as the thicknesses of the GFRP, the diameters of electrode systems and the pressures. The dielectric characteristics of the GFRP are analyzed by using a Finite Elements Method(FEM) according to various field utilization factors. It has been reported that the electrical insulation design of the GFRP would be conducted by considering the mean electric field intensity($E_{mean}$) distributed inside the GFRP. In this study, it is found that the dielectric performance of the GFRP could be explained by not only $E_{mean}$ but also the maximum electric field intensity ($E_{max}$). Finally, the empirical formulae of the GFRP to estimate an electrical breakdown voltage at sparkover under the lightning impulse condition are deduced. It is expected that the presented experimental results in this paper are helpful to design electrically reliable high voltage superconducting machines using the GFRP as an insulation material.

봉상 카본 발열체의 제조와 열 및 전기적 특성에 관한 연구 (A Study on the Thermal and Electrical Characteristics with Manufacture of the Heating Element by Using Carbon with Bar Type)

  • 배강열;이광성;정한식;정희택;정효민
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.430-437
    • /
    • 2004
  • This paper is intended as an investigation of study on the thermal and electrical characteristics of the carbon heating element. In this experimentation, the electric material used is the crystalline graphite a kind of natural graphite. The bentonite is used to solidify the heating element and the vacuum furnace is used for sintering it. It is noted that the natural drying time should be at least 58 hours. The plating of the electric pole with the electroless nickel showed the lowest contact resistance among others. The resistance shows linear variation with regard to length. For the insulation and resolution, the glaze coating is best with 80% of water content. The temperature rising characteristic of the heating element is better than sheath heater saving 43% of rising time. The correlation equation for temperature was obtained with the electric power.

제조공기를 이용한 봉전극의 형상 및 갭길이에 따른 절연파괴특성 (Breakdown Characteristics According to the Type & Gap of Rod-electrodes Using Imitation Air)

  • 이정근;이수형;안인석;장준오
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.19-23
    • /
    • 2014
  • In this paper the experiments of breakdown characteristics of rod-electrodes by pressure and gap change of imitation-air were described. The results are fundamental data for electric insulation design of distribution power facilities which will be studied and developed in the future. And we could make an environment friendly gas insulation material with mataining dielectric strength by imitation air which generates a lower lever of the global warming effect.

제조공기를 이용한 Rod전극의 절연파괴특성 (Breakdown Characteristics of Rod-Electrodes using Imitation Air)

  • 송재우;장세우;안인석;장준오
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.16-20
    • /
    • 2013
  • In this paper the experiments of breakdown characteristics by pressure and gap change of imitation air were described. The results are fundamental data for electric insulation design of distribution power facilities which will be studied and developed in the future. And we could make an environment friendly gas insulation material with mataining dielectric strength by Imitation Air which generates a lower lever of the global warming effect.

$SF_6$와 제조공기의 절연특성 비교 연구 (The Breakdown Characteristics of $SF_6$ and Imitation-Air)

  • 최은혁;박혜리;도영회;최영길;이광식
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.335-338
    • /
    • 2008
  • With the improvement of industrial society, the high quality electrical energy, simplification of operation and maintenance, ensuring reliability are being required Also we request urgently change a $SF_6$ for an environment friendly gas insulation material. In this paper the experiments of breakdown characteristics by pressure and gap change of Imitation-Air in model GIS(Gas Insulated Switchgear) were described. Also assess of breakdown characteristics about Imitation-Air and $SF_6$. It is considered in this paper that the results are fundamental data for electric insulation design of Distribution Power Facilities which will be studied and developed in the future.

  • PDF

FEM 시뮬레이션을 이용한 2MVA 몰드변압기 권선간 써지전압 분배 해석 기법 연구 (A Surge Voltage Distribution Analysis of 2MVA Cast Resin Transformer Winding with FEM Simulation)

  • 장형택;신판석
    • 조명전기설비학회논문지
    • /
    • 제25권5호
    • /
    • pp.15-21
    • /
    • 2011
  • This paper presents an analyzing method of the capacitance of the power transformer for initial voltage distribution and insulation design. When a high incoming surge voltage is accidently occurred in windings of transformer, it does not distribute equally in the windings. This phenomenon makes electric field concentration and the insulating material could be break. Initial voltage distribute mostly depends on capacitances between winding to winding or winding to core in the transformer. If the C network can be structuralized into the equivalent circuit model and be calculated each capacitance element value by circuit analysis and FEM(Finite Element Method) simulation program, the transformer designer could know the place where the structure is to be modified or the insulation to be reinforced. This method quickly provides the data of the voltage distribution in each winding to the designer.

에폭시를 사용한 변류기 (Current Transformer Using Epoxy)

  • 박철웅;김향곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.199-202
    • /
    • 2008
  • In this paper, we studied a accuracy for CT using elastic epoxy. According to industry development, the quality where also the electric material is various is demanded. Insulation material is widely used because epoxy is superior to electrical and mechanical property. Until now, the possibility where the crack will occur is high because epoxy used to electrical products had high hardness. If thermal expansion is different of two material, contraction of epoxy heavily transformed turns ratio of CT Elastic epoxy absorbed in expansion and contraction of substance material by temperature. So we could design more exacted CT We had elastic test of elastic epoxy and made CT using elastic epoxy. At the result, We obtained turns ratio of within 4% superior to existing CT.

  • PDF

가스절연 개폐장치에서 유전율 구배를 갖는 고체 절연물의 형상 최적화 (Shape Optimization of a Permittivity Graded Solid Insulator in a Gas Insulated Switchgear)

  • 주흥진;김동규;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제25권6호
    • /
    • pp.467-473
    • /
    • 2012
  • A functionally graded material (FGM) spacer, which the distribution of dielectric permittivity inside an insulator changes spatially, can considerably reduce the electric field concentration around a high-voltage electrode and along the gas-insulator interface when compared to a conventional spacer with a uniform permittivity distribution. In this research, we propose the FGM spacer with an elliptical permittivity distribution instead of that with a distribution of dielectric permittivity varying along a radial direction only in order to improve efficiently the insulation capability. The optimal design of the elliptical FGM spacer configuration is performed by using the response surface methodology (RSM) combined with the steepest descent method (SDM).