• Title/Summary/Keyword: Electric field density

Search Result 583, Processing Time 0.025 seconds

A Two-Dimensional Particle-in-cell Simulation for the Acceleration Channel of a Hall Thruster

  • Lim, Wang-Sun;Lee, Hae-June;Lee, Jong-Sub;Lim, Yu-Bong;Seo, Mi-Hui;Choe, Won-Ho;Seon, Jong-Ho;Park, Jae-Heung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.557-560
    • /
    • 2008
  • A two-dimensional particle-in-cell(PIC) simulation with a Monte-Carlo Collision(MCC) has been developed to investigate the discharge characteristics of the acceleration channel of a HET. The dynamics of electrons and ions are treated with PIC method at the time scale of electrons in order to investigate the particle transport. The densities of charged particles are coupled with Poisson's equation. Xenon neutrals are injected from the anode and experience elastic, excitation, and ionization collisions with electrons, and are scattered by ions. These collisions are simulated by using an MCC model. The effects of control parameters such as magnetic field profile, electron current density, and the applied voltage have been investigated. The secondary electron emission on the dielectric surface is also considered.

  • PDF

Structural and Electrical Properties of BiFeO3 Thin Films by Eu and V Co-Doping (Eu와 V 동시 도핑에 의한 BiFeO3 박막의 구조와 전기적 특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.229-233
    • /
    • 2019
  • Pure $BiFeO_3$ (BFO) and (Eu, V) co-doped $Bi_{0.9}Eu_{0.1}Fe_{0.975}V_{0.025}O_{3+{\delta}}$ (BEFVO) thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by chemical solution deposition. The effects of co-doping were observed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the BEFVO thin film were improved as compared to those of the pure BFO thin film. The remnant polarization ($2P_r$) of the BEFVO thin film was approximately $26{\mu}C/cm^2$ at a maximum electric field of 1,190 kV/cm with a frequency of 1 kHz. The leakage current density of the co-doped BEFVO thin film ($4.81{\times}10^{-5}A/cm^2$ at 100 kV/cm) was two orders of magnitude lower than of that of the pure BFO thin film.

Electron Collision Cross Sections for the TRIES Molecule and Electron Transport Coefficients in TRIES-Ar and TRIES-O2 Mixtures

  • Tuoi, Phan Thi;Tuan, Do Anh;Hien, Pham Xuan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1855-1862
    • /
    • 2018
  • A reliable set of low-energy electron collision cross sections for the triethoxysilane (TRIES) molecule was derived based on the measured electron transport coefficients for a pure TRIES molecule by using an electron swarm method and a two-term approximation of the Boltzmann equation. The electron transport coefficients calculated using the derived set are in good agreement with experimental value over a wide range of E/N values (ratio of the electric field E to the neutral number density N). The present electron collision cross section set for the TRIES molecule, therefore, is the most reliable so far for plasma discharges and for materials processing using the TRIES molecule. Moreover, the electron transport coefficients for the TRIES-Ar and the $TRIES-O_2$ mixtures were also calculated and analyzed over a wide range of E/N for the first time.

A Study on Accelerated Fatigue Life Testing for Industrial Inverter (산업용 인버터의 가속 피로수명 평가에 관한 연구)

  • Lee, Sanghoon;Kim, Won-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2022
  • Industrial inverters are used in a variety of fields for electric power supply. They may be exposed to vibration and heat once they are installed. This study focused on a framework of accelerated life testing of an industrial inverter considering fatigue damage as the primary source of deterioration. Instead of analyzing detailed failure mechanisms and the product's vulnerability to them, the potential of fatigue failure is considered using the fatigue damage spectrum calculated from the environmental vibration signals. The acceleration and temperature data were gathered using field measurement and spectral analysis was conducted to calculate the vibration signal's power spectral density (PSD). The fatigue damage spectrum is then calculated from the input PSD data and is used to design an accelerated fatigue life testing. The PSD for the shaker table test is derived that has the equivalent fatigue damage to the original input signal. The tests were performed considering the combined effect of random vibration and elevated temperature, and the product passed all the planned tests. It was successfully demonstrated that the inverter used in this study could survive environmental vibration up to its guarantee period. The fatigue damage spectrum can effectively be used to design accelerated fatigue life testing.

A Study on the widthwise thickness uniformity of HTS wire using thickness gradient deposition technology

  • Gwantae Kim;Insung Park;Jeongtae Kim;Hosup Kim;Jaehun Lee;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.24-27
    • /
    • 2023
  • Until now, many research activities have been conducted to commercialize high-temperature superconducting (HTS) wires for electric applications. Most of all researchers have focused on enhancing the piece length, critical current density, mechanical strength, and throughput of HTS wires. Recently, HTS magnet for generating high magnetic field shows degraded performance due to the deformation of HTS wire by high electro-magnetic force. The deformation can be derived from widthwise thickness non-uniformity of HTS wire mainly caused by wet processes such as electro-polishing of metal substrate and electro-plating of copper. Gradient sputtering process is designed to improve the thickness uniformity of HTS wire along the width direction. Copper stabilizing layer is deposited on HTS wire covered with specially designed mask. In order to evaluate the thickness uniformity of HTS wire after gradient sputtering process, the thickness distribution across the width is measured by using the optical microscope. The results show that the gradient deposition process is an effective method for improving the thickness uniformity of HTS wire.

Highly Improved Electrical Properties of A1/CaF2/Diamond MISFET Fabricated by Ultrahigh Vacuum Process and Its Application to Inverter Circuit (초고진공 프로세스에 의해 제작된 A/CaF2/Diamond MISFET의 개선된 전기적 특성과 인버터회로에의 응용)

  • Yun, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.536-541
    • /
    • 2003
  • In order to avoid oxygen contamination on the diamond surface as far as possible during the device process, the A1/Ca $F_2$/diamond MISFET(metal-insulator-semiconductor field-effect transistor) was prepared by ultrahigh vacuum process and its electrical properties were investigated. The surface conductive layer of fluorinated diamond surface was employed for the conducting channel of the MISFET. The observed effective mobility(${\mu}$e$\_$ff/) of the MISFET was 300 c $m^2$/Vs, which is the highest value obtained until now in the diamond FET. Besides, the measured surface state density of the device was ∼10$\^$11//c $m^2$ eV, which is comparable with conventional Si MOSFET$\_$s/(metal-oxide-semiconductor field-effect-transistors). This work is the first report of the fluorinated diamond MISFET prepared by ultrahigh vacuum process and its application to inverter circuit.

Design LixV2O5 Cathode Structure for Effective Lithium Ion Intercalation (리튬 이차전지 양극재 LixV2O5의 효율적인 방전을 위한 구조 설계)

  • Park, Jun Kyu;Kim, Soo Il;Kim, Dongchoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.589-594
    • /
    • 2014
  • Recently, higher capacity and energy density of lithium ion batteries are increasingly demanded for enhancing their performance in view of the rise in the commercial distribution of electric and hybrid vehicles. Computational analysis of a porous structure of vanadium pentoxide cathode was performed, employing a phase field model. The incipient model was designed as a spherical structure with cylindrical-shaped pores. Modifying the diameters and lengths of the pore cylinder and the number of pores, we considered different conditions for the porous vanadium pentoxide cathodes for analyzing their effect on the amount of lithium ion intercalated to them. Subsequently, we optimized the porous structure to contain the largest amount of intercalated lithium ion during discharge.

A Study on Optimal Design of 100 V Class Super-junction Trench MOSFET (비균일 100V 급 초접합 트랜치 MOSFET 최적화 설계 연구)

  • Lho, Young Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.109-114
    • /
    • 2013
  • Power MOSFET (metal-oxide semiconductor field-effect transistor) are widely used in power electronics applications, such as BLDC (Brushless Direct Current) motor and power module, etc. For the conventional power MOSFET device structure, there exists a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a non-uniform super-junction (SJ) trench MOSFET (TMOSFET) structure for an optimal design is proposed in this paper. It is required that the specific on-resistance of non-uniform SJ TMOSFET is less than that of uniform SJ TMOSFET under the same breakdown voltage. The idea with a linearly graded doping profile is proposed to achieve a much better electric field distribution in the drift region. The structure modelling of a unit cell, the characteristic analyses for doping density, and potential distribution are simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the non-uniform SJ TMOSFET shows the better performance than the uniform SJ TMOSFET in the specific on-resistance at the class of 100V.

The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique

  • Xu, H.S.;Sun, D.B.;Yu, H.Y.;Meng, H.M.
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.261-266
    • /
    • 2015
  • The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution ($i_{diss}$) and film formation ($i_{film}$) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 $V_{SCE}$ to 0.8 $V_{SCE}$ resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}=1$), the electric field strength through the thin passive film reached $1.6{\times}10^7V/cm$.

Analysis on the Scaling of MOSFET using TCAD (TCAD를 이용한 MOSFET의 Scaling에 대한 특성 분석)

  • 장광균;심성택;정정수;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.442-446
    • /
    • 2000
  • The metal-oxide-semiconductor field-effect transistor(MOSFET) has undergone many changes in the last decade in response to the constant demand for increased speed, decreased power, and increased parking density. Therefore, it was interested in scaling theory, and full-band Monte Carlo device simulator has been used to study the effects of device scaling on hot carriers in different MOSFET structures. MOSFET structures investigated in this study include a conventional MOSFET with a single source/drain, implant a lightly-doped drain(LDD) MOSFET, and a MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane, and those are analyzed using TCAD(Technology Computer Aided Design) for scaling and simulation. The scaling has used a constant-voltage scaling method, and we have presented MOSFET´s characteristics such as I-V characteristic, impact ionization, electric field and recognized usefulness of TCAD, providing a physical basis for understanding how they relate to scaling.

  • PDF