DOI QR코드

DOI QR Code

The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique

  • Xu, H.S. (National Center for Materials Service Safety (NCMS), University of Science and Technology Beijing) ;
  • Sun, D.B. (National Center for Materials Service Safety (NCMS), University of Science and Technology Beijing) ;
  • Yu, H.Y. (Institute of Advanced Materials and Technology, University of Science and Technology Beijing) ;
  • Meng, H.M. (Institute of Advanced Materials and Technology, University of Science and Technology Beijing)
  • Received : 2015.07.29
  • Accepted : 2015.11.26
  • Published : 2015.12.31

Abstract

The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution ($i_{diss}$) and film formation ($i_{film}$) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 $V_{SCE}$ to 0.8 $V_{SCE}$ resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}=1$), the electric field strength through the thin passive film reached $1.6{\times}10^7V/cm$.

Keywords

References

  1. A. Kocijan, C. Donik, M. Jenko. Corros. Sci., 49, 2083 (2007). https://doi.org/10.1016/j.corsci.2006.11.001
  2. S. E. Ziemniak, M. Hanson, Corros. Sci., 44, 2209 (2002). https://doi.org/10.1016/S0010-938X(02)00004-5
  3. D. Shintani, T. Ishida, H. Izumi, et al., Corros. Sci., 50, 2840 (2008). https://doi.org/10.1016/j.corsci.2008.07.006
  4. H. H. Ge, X. M. Xu, L. Zhao, et al., J. Appl. Electrochem., 41, 519 (2011). https://doi.org/10.1007/s10800-011-0272-5
  5. P. Engseth, J. C. Scully, Corros. Sci., 15, 505 (1975). https://doi.org/10.1016/0010-938X(75)90016-5
  6. Jae-Bong Lee, Mater. Chem. Phys., 99, 224 (2006). https://doi.org/10.1016/j.matchemphys.2005.10.016
  7. P. Engseth, J. C. Scully, Corros. Sci., 15, 505 (1975). https://doi.org/10.1016/0010-938X(75)90016-5
  8. F. M. Song, K. S. Raja, D. A. Jones, Corros. Sci., 48, 285 (2006). https://doi.org/10.1016/j.corsci.2005.02.001
  9. Norio Sato, Morris Cohen, J. Electrochem. Soc., 111, 512 (1964). https://doi.org/10.1149/1.2426170
  10. Eun-Ae Cho, Chin-Kwan Kim, Joon-Shick Kim, Hyuk-Sang Kwon, Electrochim. Acta, 45, 1933 (2000). https://doi.org/10.1016/S0013-4686(99)00415-6
  11. N. Cabrera, N. F. Mott, Rep. Prog. Phys., 12, 163 (1948).
  12. G. T. Burstein, P. I. Marshall, Corros. Sci., 23, 125 (1983). https://doi.org/10.1016/0010-938X(83)90111-7
  13. H. S. Kwon, E. A. Cho, and K. A. Yeom, Corrosion, 56, 32 (2000). https://doi.org/10.5006/1.3280519
  14. R. S. Lillard, G. Vasquez Jr., D. F. Bahr, J. Electrochem. Soc., 158, C194 (2011). https://doi.org/10.1149/1.3574367
  15. R. M. Fernandez-Domene, E. Blasco-Tamarit, D. M. Garcia-Garcia, J. Garcia-Anton, Electrochim. Acta, 58, 264 (2011). https://doi.org/10.1016/j.electacta.2011.09.034
  16. Lindsey R. Goodman, Preet M. Singh, Corros. Sci., 65, 238 (2012). https://doi.org/10.1016/j.corsci.2012.08.030
  17. M. Gojic, D. Marijan, L. Kosec, Corrosion, 56,839 (2000). https://doi.org/10.5006/1.3280587
  18. G. T. Burstein, A. J. Davenport, J. Electrochem. Soc., 136, 936 (1989). https://doi.org/10.1149/1.2096890
  19. M. Avrami, J. Chem. Phys., 7, 1103 (1939). https://doi.org/10.1063/1.1750380
  20. Z. Feng, X. Cheng, C. Dong, et al., Corros. Sci., 52, 3646 (2010). https://doi.org/10.1016/j.corsci.2010.07.013
  21. L. J. Oblonsky, M. P. Ryan, and H. S. Isaacs, J. Electrochem. Soc., 145, 1922 (1998). https://doi.org/10.1149/1.1838577
  22. J. Doff, P. E. Archibong, G. Jones, Electrochim. Acta, 56, 3225 (2011). https://doi.org/10.1016/j.electacta.2011.01.038
  23. H. P. Leckie and H. H. Uhlig, J. Electrochem Soc., 113, 1262 (1966). https://doi.org/10.1149/1.2423801