• Title/Summary/Keyword: Electric contact

Search Result 701, Processing Time 0.027 seconds

A Study on the Transference Mechanism of Charge carriers within the Devices (소자 내부에서 전하 운송체의 이동 메카니즘에 관한 연구)

  • Shim, Hye-Yeon;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.508-509
    • /
    • 2005
  • In case of ITO/MEH-PPV/Al structure, the quantity of charge carriers flowing through the organic material was few and the density of them is fixed. The electric field inside of the device almost didn't change with the position. On the other hands, in case of Au/MEH-PPV/Au structure, the hole density increased rapidly nearby the anode but decreased nearby the cathode. The space charge phenomenon followed sufficient hole injection resulted in the change of the electric field with the position inside of the device. We verified that the result of the current-voltage simulation corresponded with experimental result.

  • PDF

Prediction of Electromagnetic Repulsion Force and Temperature Rise in Electric Contact Mechanism Using ANSYS (ANSYS를 이용한 전기 접촉 기구의 전자 반발력 분석 및 온도 상승 예측)

  • Park W.J.;Kim K.H.;Ahn K.Y.;Oh I.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.666-669
    • /
    • 2005
  • As computer power increased, the system with complex phenomenon has been analyzed with the help of CAE software which can handle the coupled physics, such as electromagnetic, structure, thermal and fluid physics. To predict the electromagnetic repulsion force and the temperature distribution of an air circuit breaker with electric contact mechanism, ANSYS/EMAG, FLOTRAN can be used. Although some assumptions and simplifications were introduced to simulate the model, results from the computational model were in good agreement with actual measurements obtained from experiments.

  • PDF

Simulation Method for Thermal appropriate Desing of Compound Cylinder using Bondgraph Modeling (원통결합부의 열특성 최적설계를 위한 예측 시뮬레이션 방법)

  • 민승환;박기환;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.635-640
    • /
    • 1996
  • A thermo-elastic system in the production machine has highly nonlinear dynamic characteristics. In general, the finite element method is utilized for accurate analysis. However, it requires large computing time. Thus, thermo-elastic systems are usuallymodeled as electric and fluid system using lumped para,eter. In this paper. we propose the bondgraph model and transient simulation methodology of thermo-elastic system in consideration of various boundary and joint contact conditions. Consequently, the proposed method ensures a possibility of its on-line compensation about undesirable phenomena by using real time estimate process and electronic cooling device for thermal appropriate behavior. Thermo-elastic model consisting of bush and shaft including contact condition is presented.

  • PDF

Analysis of Temperature on Overhead Contact Line Using De-icing System (전차선 해빙시스템의 온도 상승효과)

  • Park Young;Kwon Samyoung;Jung Hosung;Cho Younghyun;Park Hyunjune;Lee Kiwon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.724-729
    • /
    • 2005
  • Winter weather condition can cause icing and ice coats on 25 kV overhead contact wire. This generates shocks at the mechanical interface of the collecting strips of the pantograph and the contact wire and extra electrical resistance, which may affect quality of current collection at the contact wire / collecting strips of pantograph interface. De-icing operations should he performed just before train operation to avoid the formation of another ice layer. Thus, the work in this paper is investigation and analysis of de-icing system which could be applied to the electric car line of railways.

  • PDF

A Study on Installation of Monitoring System of Wireless Power Transmission System (무선전력전송 시스템의 모니터링 시스템 구축에 관한 연구)

  • Song, Young-Sang;Han, Woon-Ki;Jung, Jin-Soo;Lim, Hyun-Sung;Cho, Sung-Koo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.47-53
    • /
    • 2015
  • The electrical safety and efficiency is the most important thing of the electric vehicle charging system. The prior system is contact charging system that is contacted directly by human. So, it has riskiness such as electric shock in the case of poor insulation or contact problems. To solve these safety issues and the convenience problems, a wireless power transmission system has been developed and is currently in trial operation. However, because high frequency is used in wireless power transmission system instead of commercial frequency, we need to apply protection measures concerning electric shock and equipment protection. Also, it should be accompanied by measuring efficiency for the effective operation of the wireless power transmission system. Therefore, we structured monitoring system in trial operation area of wireless power transmission system and applied decision algorithm for protection of human and equipment and economic operation of it.

Electrowetting of a droplet under an AC Electric Fields (교류전압 하에서의 액적의 전기습윤현상)

  • Hong, Jin-Seok;Ko, Sung-Hee;Kang, Kwan-Hyung;Kang, In-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.175-176
    • /
    • 2006
  • Electrowetting is prevailing for its various applicability on lap-on-a-chip, and MEMS devices, such as a pump, lens, micro-actuator in the micro-TAS technology. In the usual electrowetting, an AC power is preferred to DC practically. The AC electric field delays the contact angle-saturation, decreases the hysterisis, and is more stable in the view point of dielectric strength. But researches for AC electric field on electrowetting have not been reported very much yet. The different effect of AC on the electrowetting system, especially the effect of a frequency needs to be understood more concretely. In this work, the usual system for electrowetting, water droplet on the dielectric coated electrode (EWOD) is analyzed. Experimental study on the response of contact angles on input frequencies is performed. The simple circuit-model for EWOD system is considered to explain the experimental results. For more concrete understanding, the system is analyzed numerically, where simple AC-conduction model is used. Wetting tensions are analyzed under various input frequency to excavate the experimental results for the responses of the system on input frequencies.

  • PDF

Hybrid LVDC Circuit Breakers (저압직류용 하이브리드 차단기)

  • Hyo-Sung, Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.489-497
    • /
    • 2022
  • This work investigates the commutation characteristics of the current flowing through an electrical-contact-type switch to the semiconductor switch branch during the breaking operation of hybrid DC switchgear. A simple, reliable, low-cost natural commutation method is proposed, and the current commutation characteristics are analyzed in accordance with the conduction voltage drop of the semiconductor switch branch through experiments. A prototype 400 V/10 A class natural commutation type hybrid DC switchgear is set up. Its performance is verified, and its characteristics are analyzed.

Development of an Arc Detector Assessment System by Loss of Contact Between Pantograph and Contact Wire in Electric Railway (전기철도 팬터그래프-전차선간 이선아크 검측 평가 기술 개발)

  • Park, Young;Cho, Yong-Hyeon;Kwon, Sam-Young;Lee, Ki-Won;You, Won-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2171-2175
    • /
    • 2011
  • The objective of this paper is to discuss technologies on assessing reliability of arc detectors by composing a system that generates and simulates occurrence of arc caused by loss of contact between pantographs and contact wires in a laboratory condition. In order to establish the arc simulator, a device that generates light having the bandwidth of arcs that occur between carbon-metal. The simulator was designed under conditions of EN 50317 and simulations were conducted using the developed device. According to the results, it was possible to conduct certification tests following regulations of international standards and the precision of the simulator was satisfactory. The proposed arc detector assessment system is expected to enhance precision of current collection quality performance assessment methods at high-speed lines and conventional lines while being referred as fundamental technologies for development of detectors suiting international conditions.

A Study on the Bend Deformation Cause Analysis of CAE Applied Wire to Board Connectors (압접 커넥터 CAE 적용 휨 변형 원인 분석에 관한 연구)

  • Jeon, Yong-Jun;Shin, Kwang-Ho;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • Connectors are very important components that transmit electric signals to different parts. It must maintain intensity of the connector to prevent defects from impact and maintain contact to transmit electric signals. Most of the external parts of the connector, which act as the main framework, are formed by injection molding. However, bend deformation occurs for injection molded products due to the residual stress left inside the product after product molding. When the bend deformation is large, it does not come into complete contact when being assembled with other parts, which leads to connector contact intensity not being properly maintained. In result, the main role of the connector, which is to transmit electric signals, cannot be performed. In order to address this problem, this study conducted bend deformation cause analysis through bend deformation analysis to predict and prevent bend deformation of housings and wafers, which are injection molded products of pressure welded connectors that are normally applied in compact mobile and display products. Bend deformation analysis was carried out by checking the charging time, pressure distribution and temperature distribution through wire to board connector wafer and housing injection molding analysis. Based on the results of the bend deformation analysis results, the cause of the bend deformation was analyzed through deformation resulting from disproportional cooling, deformation resulting from disproportional contraction, and deformation resulting from ingredient orientation. In result, it was judged that the effects for bend deformation were biggest due to disproportional contraction for both the pressure welded connector wafer and housing.