• Title/Summary/Keyword: Electric cable sheath

Search Result 27, Processing Time 0.024 seconds

A study or Metallic sheath for Extra-high voltage XLPE cable (초고압 XLPE 케이블 금속 차폐층 고찰)

  • Choi, C.S.;Lee, K.J.;Chung, M.Y.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1652-1654
    • /
    • 1994
  • The Extra-high voltage XLPE cable is characterized by low transmission loss, large capacity, and high reliability. Conventionally, for XLPE cables of l54kV and above, aluminium sheath was used to be moisture barrier (thus preventing water tree deterioration of the insulation) and to protect cable core from physical stresses. However, as transmission capacity of the cable increases, so does the cable diameter and the corresponding aluminium sheath outer diameter and thickness. As a result, eddy-current loss in the sheath is increased, limiting the maximum current capacity of the cable itself. As an alternative to aluminium sheath, we have adopted stainless steel sheath with non-magnetic properties and a large resistivity, The new XLPE cable with stainless-steel sheath (CSZV cable) has drastically reduced eddy-current loss in the sheath.

  • PDF

A Study on Effect of Coating Stain on the Performance of Electric Cable (도장 오염이 Electric Cable의 성능에 미치는 영향 연구)

  • Cho, Yeon-Ho;Lee, Sang-Hyeok;Son, Young-Shuk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.18-23
    • /
    • 2009
  • After the installation of electric cables at block, PE(pre-erection) and hull stages, the coating stains on the electric cable sheath were unavoidably occurred by additional painting process. According to class rules paint or coating applied on the electric cables shall not adversely affect the mechanical, chemical of fire resistant characteristics of the electric cable sheath. However, there has not been quantitatively studied about the effect of coating stains on properties of sheath materials. In this study, we tried to investigate the effect of coating stains on the performance and deterioration of sheath materials by using FTIR, SEM analysis, flame retardant, high potential voltage and tensile test. The results sowed that coating stains, which were occurred during painting work on site could not adversely affect on the performance and deterioration of sheath materials.

  • PDF

Sheath Circulating Current Analysis of a Crossbonded Power Cable Systems

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.320-328
    • /
    • 2007
  • The sheath in underground power cables serves as a layer to prevent moisture ingress into the insulation layer and provide a path for earth return current. Nowadays, owing to the maturity of manufacturing technologies, there are normally no problems for the quality of the sheath itself. However, after the cable is laid in the cable tunnel and is operating as part of the transmission network, due to network construction and some unexpected factors, some problems may be caused to the sheath. One of them is the high sheath circulating current. In a power cable system, the uniform configuration of the cables between sections is sometimes difficult to achieve because of the geometrical limitation. This will cause the increase of sheath circulating current, which results in the increase of sheath loss and the decrease of permissible current. This paper will study the various characteristics and effects of sheath circulating current, and then will prove why the sheath current rises on the underground power cable system. A newly designed device known as the Power Cable Current Analyser, as well as ATP simulation and calculation equation are used for this analysis.

Analysis of Eddy Current Loss Considering Interaction Effect in Metal Sheath of 154 kV Three Phase Power Cable (154 kV 3상 전력 케이블의 상호작용에 따른 금속 Sheath에서 발생하는 와전류 손실 분석)

  • Im, Sang Hyeon;Kim, Ki Byung;Park, Gwan Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.389-392
    • /
    • 2020
  • In order to accurately predict the losses in the power cable, analysis of the eddy current losses in the metal sheath is required. The copper loss is easily calculated by the resistance and current of the conductor, but it is difficult to measure and predict the eddy current generated from the metal sheath. For this purpose, the previous study analyzed the eddy current loss in single phase cable, but there is a limit to apply it because three phase cables are used in real environment. Therefore, in this paper, the eddy current loss occurring in the metal sheath of three phase cable according to the cause was analyzed theoretically. In addition, the eddy current loss occurring in the triangular and horizontal array were predicted through electromagnetic numerical analysis.

Reduction Methods of Sheath Circulating Current in Underground Cable (지중 송전선로에서 시스 순환전류 저감 방안)

  • Ha, C.W.;Kim, J.N.;Lee, S.K.;Kim, D.W.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.175-177
    • /
    • 2002
  • The use of underground transmission cables has increased continuously in densely inhabited urban and suburban for power transmission. Two or more transmission lines are outgoing from one substation in many cases, and one line comprises twin circuits. In order to meet the increasing do and for electric power, underground tables of two or fore circuits are installed in ducts in parallel for several kilometer in the same route. It, however, has not been known generally that the sheath circulating current is generated in a system where a large number of cables are laid on the same route. Therefore, this paper describes an improved analysis method for sheath circulating current on underground transmission cables using EMTP. Author propose several methods to reduce sheath circulating current. The analysing method and reduction methods for two or more underground cables will be really improved for cable system utility.

  • PDF

A Study on the Transient Characteristic and Protection Schemes of Sheath Circulating Current Reduction Equipment (시스 순환전류 저감장치의 과도특성 및 보호방식에 관한 연구)

  • 강지원;한용희;정채균;이종범
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.421-428
    • /
    • 2003
  • After the cable is installed, many geometric factors, such as bowing types of the cable and the length difference of the cable between each minor section will cause the impedance unbalance between cables. The impedance unbalance will increase or decrease the sheath circulating currents, which are critical to human safety and sustaining the capabilities of electric power. Accordingly, in this paper, a new method is also proposed to reduce the sheath circulating currents and an reduction equipment according to the theory of the new method is developed. The reduction equipment is tested when the cable is on service. The test results show that it can reduce the sheath circulating currents by up to 97.8[%]. This confirms the validation of the new method and the reduction equipment, and assures the safe operation of the transmission cables. In order to illustrate the safe operation of the cable with new current reduction equipment at transient state due to lightning and single line-to-ground fault, extensive simulations have been made. Then the protection scheme of sheath circulating currents reduction equipment is proposed by adopting the new device of RDP(Reduction Device Protector).

Analysis of Sheath Induced Voltage and CCPU Operating Characteristic in Underground Transmission Cable (지중송전계통에서 시스유기전압 및 CCPU 동작 특성 해석)

  • Jin, Hye-Young;Lee, Jong-Beom;Kim, Young;Cho, Han-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.494-496
    • /
    • 2001
  • This paper describes sheath induced voltage and operating characteristic of cable cover protection unit(CCPU) in underground transmission cable. Real cable system operating by 154kV XLPE cable was modelled for simulation. Sheath induced voltage and operating characteristic of CCPU were analyzed. In particular, sheath induced voltage was analyzed in case of individual grounding and common grounding, respectively, and operating characteristics of CCPU were compared each other.

  • PDF

Analysis of Eddy Current Distribution and Loss in Metal Sheath of 154 kV Single Power Cable (154 kV 단상 전력 케이블의 금속 Sheath에서 발생하는 와전류 분포 및 손실 분석)

  • Im, Sang Hyeon;Kim, Kyoung Youn;Kim, Ki Byung;Park, Gwansoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.115-118
    • /
    • 2020
  • As interest in the reduction of energy loss has increased in recent years, analysis of losses in power cables is becoming more important. The overall loss in the transmission system can be measured, but there are many difficulties in researching the loss in each internal structure. There are various factors in the type of loss, and the loss of external factors by previous research has been studied. However, there is little research on the cable internal loss. Since the metal sheath inside the cable is made of aluminum having a high conductivity, an eddy current is generated due to the current flowing in the conductor, thereby causing an eddy current loss inevitably. In this paper, the eddy current loss in metal sheath of 154 kV Cable was researched through FEM (Finite Element Method) electromagnetic analysis.

The study on slipping down phenomenon of 345kv XLPE cable in inclinatior (경사지에서의 345kV XLPE $1C{\times}2000mm^2$ 케이블 코아 활락 현상 연구)

  • Baek, J.H.;Nam, S.H.;Lee, S.K.;Heo, H.D.;Kim, D.W.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1782-1784
    • /
    • 2002
  • In this paper, the coefficient of friction betwee and sheath in 345kv XLPE cable was measured the simulated inclinated condition of You-Youngdeungpo transmission line. The phenomena of slipping down the simu inclination was investigated theoretically usin measured data and was analyzed from experim result. The measured and analyzed result were conside be as a reference data for real installation of XLPE Youngseo-Youngdeungpo transmission line.

  • PDF

Analysis and Reduction Methods of Sheath Circulating Current in Underground Transmission Systems (지중송전계통에서 시스순환전류 해석 및 저감방안)

  • Jeong, Chae-Gyun;Lee, Jong-Beom;Gang, Ji-Won;Jang, Tae-In
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.537-545
    • /
    • 2001
  • This paper describes the analysis of sheath circulating current and various methods to reduce the large circulating current in case of operating cable system using EMTP/ATPDraw. And also, possible methods are proposed through a detailed analysis regarding cable systems by considering various electrical and environmental factors. It is evaluated that the proposed reduction methods can be effectively applied to reduce the large sheath circulating over current with the minimized electrical problems.

  • PDF