• Title/Summary/Keyword: Electric Power Service

Search Result 380, Processing Time 0.03 seconds

A Study on the Propulsion and Braking Performance of the High Speed Freight Train with Composing the Rolling Stocks Formation (차량편성구성에 따른 고속화물열차의 추진 및 제동성능 분석 연구)

  • Han, Seong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.298-302
    • /
    • 2016
  • Currently, logistics are in small quantities and in diverse forms, and the amounts are continuously increasing. Railway logistics however are losing their market share every year mainly due to low operation speed and loading time, which means the trucks are covering the most of the freights. In order to solve these situations, this paper proposed the high speed freight train as working multi-modality with other modes to make effective transshipment. The high speed freight train has maximum operation speed of 300km/h and electric power to run centralized power supply. There are large dual door system, bogie system covering fluctuating load of 15[ton], automatic loading device, ULD(unit load device) bed and ULD locking system in this freight rolling stock. We calculated the performance of powering and braking capacity for this train and proposed how many vehicles are composed of train set. The results in this paper can help to make a decision to define the technical specification of High-speed freight train for the efficiency of rail freight service.

Analysis of Partial Discharge Phenomena by means of CAPD (CAPD기법을 이용한 부분방전 현상 해석에 관한 연구)

  • Kim, Sung-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.939-944
    • /
    • 2002
  • PD phenomena can be regarded as a deterministic dynamical process where PD should be occurred if the local electric field be reached to be sufficiently high. And thus, its mathematical model can be described by either difference equations or differential equations using several state variables obtained from the time sequential measured data of PD signals. These variables can provide rich and complex behavior of detectable time series, for which Chaos theory can be employed. In this respect, a new PD pattern recognition method is proposed and named as 'Chaotic Analysis of Partial Discharges (CAPD)' for this work. For this purpose, six types of specimen are designed and made as the models of the possible defects that may cause sudden failures of the underground power transmission cables under service, and partial discharge signals, generated from those samples, are detected and then analyzed by means of CAPD. Throughout the work, qualitative and quantitative properties related to the PD signals from different defects are analyzed by use of attractor in phase space, information dimensions ($D_0$ and D2), Lyapunov exponents and K-S entropy as well. Based on these results, it could be pointed out that the nature of defect seems to be identified more distinctively when the CAPD is combined with traditional statistical method such as PRPDA. Furthermore, the relationship between PD magnitude and the occurrence timing is investigated with a view to simulating PD phenomena.

  • PDF

Simple Switch Open Fault Detection Method for Voltage Source Inverter (전압원 인버터의 간단한 스위치 개방 고장 감지 방법)

  • Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.430-438
    • /
    • 2008
  • Recently, permanent magnet synchronous motor are applied to various applications such as electric vehicle, aerospace, medical service and military applications due to several outstanding characteristics. Because of the importance of high reliable operation in these areas, many research related to the fault detection and diagnosis of inverter system are conducted. In this paper, new simple fault detection method of voltage source inverter for permanent magnet synchronous motor is proposed. The feasibility of the proposed method are improved by simulation and experiment. By the simulation and experiments, rapid detection characteristic of the proposed method has been proved without any additional voltage sensor.

A Study on Consumer Protections for the Introduction of Smart Grid (스마트그리드 도입에 따른 소비자 보호 연구)

  • Kim, Hyun-Jae;Jo, Sung-Han
    • Journal of Digital Convergence
    • /
    • v.9 no.5
    • /
    • pp.1-9
    • /
    • 2011
  • The smart grid can create benefits such as the expansion of consumer choice and flexibility enhancement, adaption to future electric power industry change and the increasing use of renewable energy sources. Consumers can make a contribution to improve the overall effectiveness of system through active receptive response. They can enhance the energy consumption efficiency based on more information from service providers. The Smart Grid Promotion Act, which was enacted in April 2011, contains consumer protection provisions such as information collecting, sharing, and protection measures. On this reason, it is needed to expand promotion and education regarding the smart grid to improve the consumer awareness, and the schemes to enhance smart grid consumer acceptance should be established.

Optimal Voltage Regulation Method for Distribution Systems with Distributed Generation Systems Using the Artificial Neural Networks

  • Kim, Byeong-Gi;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.712-718
    • /
    • 2013
  • With the development of industry and the improvement of living standards, better quality in power electric service is required more than ever before. This paper deals with the optimal algorithms for voltage regulation in the case where Distributed Storage and Generation (DSG) systems are operated in distribution systems. It is very difficult to handle the interconnection issues for proper voltage managements, because the randomness of the load variations and the irregular operation of DSG should be considered. This paper proposes the optimal on-line real time voltage regulation methods in power distribution systems interconnected with the DSG systems. In order to deliver suitable voltage to as many customers as possible, the optimal sending voltage should be decided by the effective voltage regulation method by using artificial neural networks to consider the rapid load variation and random operation characteristics of DSG systems. The simulation results from a case study show that the proposed method can be a practical tool for the voltage regulation in distribution systems including many DSG systems.

Stochastic Estimation of Acoustic Impedance of Glass-Reinforced Epoxy Coating

  • Kim, Nohyu;Nah, Hwan-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.119-127
    • /
    • 2014
  • An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

Stochastic Gradient Descent Optimization Model for Demand Response in a Connected Microgrid

  • Sivanantham, Geetha;Gopalakrishnan, Srivatsun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.97-115
    • /
    • 2022
  • Smart power grid is a user friendly system that transforms the traditional electric grid to the one that operates in a co-operative and reliable manner. Demand Response (DR) is one of the important components of the smart grid. The DR programs enable the end user participation by which they can communicate with the electricity service provider and shape their daily energy consumption patterns and reduce their consumption costs. The increasing demands of electricity owing to growing population stresses the need for optimal usage of electricity and also to look out alternative and cheap renewable sources of electricity. The solar and wind energy are the promising sources of alternative energy at present because of renewable nature and low cost implementation. The proposed work models a smart home with renewable energy units. The random nature of the renewable sources like wind and solar energy brings an uncertainty to the model developed. A stochastic dual descent optimization method is used to bring optimality to the developed model. The proposed work is validated using the simulation results. From the results it is concluded that proposed work brings a balanced usage of the grid power and the renewable energy units. The work also optimizes the daily consumption pattern thereby reducing the consumption cost for the end users of electricity.

An Exploratory Study on the Applicability of Thin-Film Photovoltaic Cells for Auxiliary Power Supply of a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 보조 전력공급을 위한 유연소재 태양전지의 적용 가능성 연구)

  • Kang, Seok-Won;Han, Soo-Jin;Jeong, Rag-Gyo;Oh, Hyuck Keun;Ko, Sangwon;Choi, Dooho
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2014
  • Recently, trends in new transportation system development have been primarily focused on sustainable and ecofriendly mobility solutions. The personal rapid transit (PRT) system has been considered a promising candidate in this category; its competitiveness is being improved through convergence with cutting-edge electric vehicle (EV) technologies. However, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. In this study, a design approach for a solar-power assisted PRT system is presented with small-scale demonstrations aimed at circumventing challenges facing its adoption, as well as helping speed the transition to electric-powered ground transportation. From the results, it is expected that flexible photovoltaic (PV) cells will be able to supply 11% of the power required by the service equipment installed in a prototype vehicle. In particular, flexible photovoltaic (PV) cells are advantageous in terms of cost, weight, and design considerations. Most importantly, the cells' flexibility and attach-ability are expected to give them great potential for extended application in various areas.

Experimental Study of Freeze and Thaw Effect on Gas Diffusion Layer Using XRay Tomography (X-선 단층 촬영을 이용한 동결과 융해가 기체확산층에 미치는 영향에 대한 실험적 연구)

  • Je, Jun-Ho;Kim, Jong-Rok;Doh, Sung-Woo;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.487-490
    • /
    • 2011
  • We used X-ray tomography to carry out an experimental study to visualize the effect of freeze and thaw cycles on the gas diffusion layer (GDL) in a polymer electrolyte membrane fuel cell (PEMFC). A PEMFC has freeze and thaw cycles if the fuel cell is operating at a below-freezing ambient temperature. The cycle permanently deforms the fuel-cell capillary structures and reduces the ability of the cell to generate electric power and also reduces its service life. The GDL is the thickest capillary layer in the fuel cell, so it experiences the most deformation. The X-ray tomography facility at the Pohang Accelerator Laboratory was used to observe the structural changes in GDLs induced by a freeze and thaw cycle. We discuss the effects of these structural changes on the power production and service life of PEMFCs.

An Analysis of Water Consumption Structures in Korean Industry Using the Input-Output Model (산업연관모형을 이용한 우리나라 산업의 직·간접 물소비 구조 분석)

  • Park, Chang-Gui;Lee, Ki-Hoon
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.21-39
    • /
    • 2010
  • In this paper, water consumption annually for industries in Korea was estimated for the first time and based on this, an input-output model was prepared for water consumption analysis. Also making use of this, the direct and indirect water consumption effect according to industrial activities was analyzed and the total effect based on volume was broken down into each factor. The amount of water consumed for industries in Korea (excluding agriculture, forestry and fishery) was estimated about 7 billion and 692 million ton in 2003(excluding sea water). Classifying by industry, the one for electric power & water service accounted for almost half, 49.5%, metalworking industry for 24.3% and chemical industry for 5.0%. As the result of estimation for the direct and indirect water consumption inducement coefficients, the amount of water consumed per the production of one million won ranked the highest for electric power & water service as 113.8 ton and the next highest ones ranked as 49.6 ton for the first metalworking, 16.8 ton for textile and leather goods, and 11.9 ton for general machinery respectively. In the meantime, as the result of breaking down into each factor of total amount of water consumed by industry, it appeared that the ripple effect having on other industries was more than the direct effect.

  • PDF