• Title/Summary/Keyword: Electric Power Loads

Search Result 365, Processing Time 0.031 seconds

교류전기철도 불평형 전력 개선을 위한 전력보상장치 제어 (Power Compensator Control for Improving Unbalanced Power of AC Electric Railway)

  • 우제훈;조종민;이태훈;차한주
    • 전력전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.213-218
    • /
    • 2020
  • In this study, we propose a control algorithm to reduce the unbalanced characteristics of a three-phase system power caused by the unbalanced load of the AC electric railway. Then, we verify its performance through the design of a power compensator and experiments applying it. Like electric railway systems, a Scott transformer is applied, and the load and single-phase back-to-back converters are connected to the M-phase and T-phase outputs. The back-to-back converter monitors the difference in active power between the unbalanced loads in real-time and compensates for the power by using bidirectional characteristics. The active power is performed through PI control in the synchronous coordinate system, and DC link overall voltage and voltage balancing control are controlled jointly by M-phase and T-phase converters to improve the responsiveness of the system. To verify the performance of the proposed power compensation device, an experiment was performed under the condition that M-phase 5 kW and T-phase 1 kW unbalanced load. As a result of the experiment, the unbalance rate of the three-phase current after the operation of the power compensator decreases by 58.66% from 65.04% to 6.38%, and the excellent performance of the power compensator proposed in this study is verified.

8200대 전기기관차 보조전원장치의 특성에 관한 연구 (A Study for Characteristics of the Auxiliary Inverter in the 8200 Electric Locomotive)

  • 김진용;이상준;최종묵;강승욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.237-244
    • /
    • 2005
  • The Auxiliary Inverter supply the power to Loads of Electric Locomotive. The Auxiliary Inverter have three characteristics. First, The Auxiliary Inverter is VVVF(variable voltage variable frequency) inverter. And, the output voltage is AC $0^{\sim}440V$. Second, The Auxiliary Inverter is controled all operations by CCU(Center Control Unit). Last, The Auxiliary Inverter have the SIBMON program. This program easily displays most of all status of auxiliary inverter.

  • PDF

축사 규모별 누전성분 특성 분석 (Analysis of Characteristic for Electric Leakage Component at Stable Size)

  • 김성철;김두현
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.54-58
    • /
    • 2012
  • This paper is purposed to analyze electric leakage component which can prevent electrical fires on breaker capacity expansion and power failure by operation of ELB(Earth leakage breaker) for stable sizes. In order to analysis for electric leakage component for stable sizes, this paper studied field state investigation which are at stable companies( 10 companies) in cheong-won location to deduce the problems of electric leakage component is analyzed. The field state experiment method is measured with electric leakage component which load part of ELB detected by electric loads(electrical fan, lighting, auto waterer, feeder and halogen lighting) and stable sizes. Results show that electric leakage component suggested in this paper are valuable and usable to electrical fire in leakage current based on environment factor, which will prevent severe damage to human beings and properties and reduce the electrical fires in stable.

1100℃급 가스터빈 동익의 무고장시험을 통한 HCF 신뢰성 평가 (Success Run Test for Reliability Demonstration of 1100℃ Gas Turbine Blades)

  • 이두영;구재량;김두수;김동환
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제3권2호
    • /
    • pp.107-111
    • /
    • 2017
  • $1100^{\circ}C$급 가스터빈 동익의 국산화 개발품에 대한 신뢰성을 무고장시험법에 의해 평가하였다. 터빈 동익은 기동, 정지 중에 발생하는 공진 또는 유체유발진동을 겪는 등 터빈 운전 중 상시 다양한 동하중에 노출되어 있으며, 이러한 변동하중은 터빈 동익에 고주기피로손상을 초래한다. 특히 동익의 파손에 의한 사고는 타 설비로의 파급이 크고, 막대한 경제적 피해를 야기하기 때문에, 발전소의 안정적인 운전을 위해 동익의 신뢰성이 우선 검증되어야 한다. 동익에 균열을 일으키기 위해서 전자식 가진기를 이용하여 공진에 의한 증폭된 동하중을 부과하였다. 가스터빈 동익의 수명분포를 와이블 분포로 가정하여 를 시험 시간을 계산하고, 시료 1개의 고장을 허용하는 조건으로 총 5개의 개발품을 대상으로 시험을 수행하여, 개발품 동익의 목표 수명을 90% 신뢰도로 보증할 수 있다는 것을 90% 신뢰수준에서 확인하였다.

발전비용을 고려한 연계선로 융통조류한계 계산의 알고리즘 제안 (A algorithm of determining the maximum interface flow limit using merit order)

  • 박유경;한상욱;서상수;이병준;신정훈;김태균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.271-273
    • /
    • 2005
  • In KEPCO(Korea Electric Power Corporation)system, 40% of total loads is ones of metropolitan area and large staled generation plants are located out of metropolitan area. Therefore, to decide the maximum power transfer capability of interface line between the regions is essential for planning, control and operation of efficient transmission system. For this reason, prior study suggested calculating the limit of our interface line from the side of voltage stability. However, the presented plan had a limit partially to apply practice power system. Therefore this paper suggests a algorithm that change the generation output as the merit order instead of prior method that distribute according to proportion of present output. This method could be applied closer to practice than the existing algorithm because it consider generation cost.

  • PDF

Dynamic Economic Dispatch and Control of a Stand-alone Microgrid in DongAo Island

  • Ma, Yiwei;Yang, Ping;Guo, Hongxia;Wang, Yuewu
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1432-1440
    • /
    • 2015
  • A dynamic economic dispatch and control method is proposed to minimize the overall generating cost for a stand-alone microgrid in DongAo Island, which is integrated with wind turbine generator, solar PV, diesel generator, battery storage, the seawater desalination system and the conventional loads. A new dispatching strategy is presented based on the ranking of component generation costs and two different control modes, in which diesel generator and battery storage alternate to act as the master power source to follow system power fluctuation. The optimal models and GA-based optimization process are given to minimize the overall system generating cost subject to the corresponding constraints and the proposed dispatch strategy. The effectiveness of the proposed method is verified in the stand-alone microgrid in DongAo Island, and the results provide a feasible theoretical and technical basis for optimal energy management and operation control of stand-alone microgrid.

A Bidirectional Dual Buck-Boost Voltage Balancer with Direct Coupling Based on a Burst-Mode Control Scheme for Low-Voltage Bipolar-Type DC Microgrids

  • Liu, Chuang;Zhu, Dawei;Zhang, Jia;Liu, Haiyang;Cai, Guowei
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1609-1618
    • /
    • 2015
  • DC microgrids are considered as prospective systems because of their easy connection of distributed energy resources (DERs) and electric vehicles (EVs), reduction of conversion loss between dc output sources and loads, lack of reactive power issues, etc. These features make them very suitable for future industrial and commercial buildings' power systems. In addition, the bipolar-type dc system structure is more popular, because it provides two voltage levels for different power converters and loads. To keep voltage balanced in such a dc system, a bidirectional dual buck-boost voltage balancer with direct coupling is introduced based on P-cell and N-cell concepts. This results in greatly enhanced system reliability thanks to no shoot-through problems and lower switching losses with the help of power MOSFETs. In order to increase system efficiency and reliability, a novel burst-mode control strategy is proposed for the dual buck-boost voltage balancer. The basic operating principle, the current relations, and a small-signal model of the voltage balancer are analyzed under the burst-mode control scheme in detail. Finally, simulation experiments are performed and a laboratory unit with a 5kW unbalanced ability is constructed to verify the viability of the bidirectional dual buck-boost voltage balancer under the proposed burst-mode control scheme in low-voltage bipolar-type dc microgrids.

SVPWM을 이용한 전기철도용 회생 인버터 개발 (Development of Regenerative Inverter for Electric Railway Using Space Vector PWM)

  • 정문구;백병산;김태완;류승표;김남해
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.15-18
    • /
    • 2003
  • The electric power, regenerated while railway vehicles braking or running downhill, makes U line voltage rise and the feeding system may not be secure. In order to keep away from these kind of insecurity, the regenerative energy should be consumed by loads or transmitted to the AC side via certain devices such as DC/AC converters. This paper introduces the developed regenerative inverter for electric railway.

  • PDF

직류환경에서 인체에 흐르는 감전전류 분석 (Analysis on Electric Shock Current in DC Electricity)

  • 이진성;김효성
    • 전력전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.254-259
    • /
    • 2016
  • Recently, DC distribution systems have become a hot issue because of the increase in digital loads and DC generation systems according to the expansion of renewable energy technologies. To obtain the practical usage of DC electricity, safety should be guaranteed. The main concerns for safety are twofold: one side is human protection against electric shocks, and the other is facility protection from short faults. "Effects of current on human beings and livestock" (IEC 60479) defines a human body impedance model in electric shock conditions that consists of resistive components and capacitive components. Although the human body impedance model properly works in AC electricity, it does not well match with the electric shock behavior in DC electricity. In this study, the contradiction of the human body impedance model defined by IEC 60479 in case of DC electricity is shown through experiments for the human body. From the analysis of experimental results, a novel unified human body impedance model in electric shock conditions is proposed. This model consists of resistive components, capacitive components, and an inductance component. The proposed human impedance model matches well for AC and DC electricity environments in simulation and experiment.