• 제목/요약/키워드: Electric Heat Line

검색결과 64건 처리시간 0.025초

Evaluation of Fracture Toughness on High Frequency Electric Resistance Welded API 5LB Steel Pipe (API 5LB강관의 고주파전기저항용접부에 관한 파괴인성 평가)

  • 오세욱;윤한기;안계원
    • Journal of Ocean Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.127-137
    • /
    • 1987
  • The evaluation of the elastic-plastic fracture toughness $J_{1C}$ was performed on the center of weld metal(CWM), the heat affected zone (HAZ) and the base metal (BM) of API 5LB steel pipes welded by the high frequency electric resistance welding. The $J_{1C}$ was evaluated by the JSME R-Curve and JSME SZW methods using the smooth and side-grooved specimens. The results are as follows; (1) The $J_{1C}$ values by the SZW method are overestimated as compared with those by the R-curve method, because the micro-crack is formed as SZW increase with the deformation at SZ after initiation of the ductile crack. (2) The everage of $J_{1C}$ values by the the R-curve and the SZW methods in side-grooved specimens tended to decrease in comparison with smooth specimens 9.42% at CWM, 4.2% at HAZ, 23.2% at BM, respectively. (3) The boundary of the fatigue pre-crack, stretched zone, and dimple regions appeared more clearly in side-grooved specimens, for the slight change of SZW in the direction of the plate thickness, as compared with smooth specimens.

  • PDF

Operation Performance of a Polymer Electrolyte Fuel Cell Cogeneration System for Residential Application (가정용 고분자연료전지 시스템의 운전 방법에 따른 성능 비교)

  • Lee, W.Y.;Jeong, K.S.;Yu, S.P.;Um, S.K.;Kim, C.S.
    • Journal of Hydrogen and New Energy
    • /
    • 제16권4호
    • /
    • pp.364-371
    • /
    • 2005
  • Fuel cell systems(FCS) have a financial and environmental advantage by providing electricity at a high efficiency and useful heat. For use in a residence, a polymer electrolyte fuel cell system(PEFCS) with a battery pack and a hot water storage tank has been modelled and simulated. The system is operated without connection to grid line. Its electric conversion efficiency and heat recovery performance are highly dependent on operation strategies and also on the seasonal thermal and electric load pattern. The output of the fuel cell is controlled stepwise as a function of the state of the battery and/or the storage water tank. In this study various operation strategies for cogeneration fuel cell systems are investigated. Average fuel saving rates at different seasons are calculated to find proper load management strategy. The scheme can be used to determine the optimal operating strategies of PEFCS for residential and building applications.

Analysis on Temperature Distribution and Current-Carrying Capacity of GIL Filled with Fluoronitriles-CO2 Gas Mixture

  • Chen, Geng;Tu, Youping;Wang, Cong;Cheng, Yi;Jiang, Han;Zhou, Hongyang;Jin, Hua
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2402-2411
    • /
    • 2018
  • Fluoronitriles-$CO_2$ gas mixtures are promising alternatives to $SF_6$ in environmentally-friendly gas-insulated transmission lines (GILs). Insulating gas heat transfer characteristics are of major significance for the current-carrying capacity design and operational state monitoring of GILs. In this paper, a three-dimensional calculation model was established for a GIL using the thermal-fluid coupled finite element method. The calculated results showed close agreement with experimentally measured data. The temperature distribution of a GIL filled with the Fluoronitriles-$CO_2$ mixture was obtained and compared with those of GILs filled with $CO_2$ and $SF_6$. Furthermore, the effects of the mixture ratio of the component gases and the gas pressure on the temperature rise and current-carrying capacity of the GIL were analyzed. Results indicated that the heat transfer performance of the Fluoronitriles-$CO_2$ gas mixture was better than that of $CO_2$ but worse than that of $SF_6$. When compared with $SF_6$, use of the Fluoronitriles-$CO_2$ gas mixture caused a reduction in the GIL's current-carrying capacity. In addition, increasing the Fluoronitriles gas component ratio or increasing the pressure of the insulating gas mixture could improve the heat dissipation and current-carrying capacity of the GIL. These research results can be used to design environmentally-friendly GILs containing Fluoronitriles-$CO_2$ gas mixtures.

Quench Distribution in AU/YBCO Thin Film Meander Lines with a Au Meander Line Heater (금선 히터가 있는 금/YBCO 박막 선에서의 퀜치 분포)

  • Kim, H. R.;J. W. Shim;O. B. Hyun;J. M. Oh
    • Progress in Superconductivity
    • /
    • 제5권2호
    • /
    • pp.118-123
    • /
    • 2004
  • We investigated quench distribution in AU/YBCO thin film meander lines with a heater. Quench distribution during faults is important for superconducting fault current limter applications, because uniform quench allows application of higher voltages across the meander lines. AU/YBCO thin films grown on sapphire substrates were patterned into meander lines by photolithography. Gold films grown on the rear sides of the substrates were also patterned into meander lines, and used as heaters. Meander lines on the front and the rear sides were connected in parallel. The meander lines were subjected to simulated AC fault currents for quench measurements during faults. They were immersed in liquid nitrogen during the experiment for effective cooling. Resistance of the AU/YBCO meander lines initially increased more rapidly with the rear heater than without, and consequently the fault current was limited more. The resistance subsequently became similar, The resistance distribution was more uniform with the heater, especially during the initial quench. Quench was completed more uniformly and significantly earlier. This resulted in uniform distribution of dissipated power. These results could be explained with the concept of quench propagation, which was accelerated by heat transfer across the substrate from the rear heater.

  • PDF

Domestic Efforts for SFCL Application and Hybrid SFCL (국내 초전도 한류기 요구와 하이브리드 초전도 한류기)

  • Hyun, O.B.;Kim, H.R.;Yim, Y.S.;Sim, J.;Park, K.B.;Oh, I.S.
    • Progress in Superconductivity
    • /
    • 제10권1호
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

Development of Distribution Transformer with Condition Monitoring Sensors and Data Processing Unit (상태감시용 센서를 내장한 배전용 변압기 및 데이터 처리장치 개발)

  • Jung, Joon-Hong;Yu, Nam-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.201_202
    • /
    • 2009
  • This paper presents a design methodology of a distribution transformer with condition monitoring sensors and its data processing unit. The proposed distribution transformer includes various type of condition monitoring sensors such as load current/voltage, temperature and heat aging of insulating oil. The data processing unit is installed at the distribution transformer site. It integrates sensed data and transmits these to a central server system. The proposed distribution transformer and its data processing unit will help an on-line condition monitoring system for distribution transformers.

  • PDF

Non Darcy Mixed Convection Flow of Magnetic Fluid over a Permeable Stretching Sheet with Ohmic Dissipation

  • Zeeshan, A.;Majeed, A.
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.153-158
    • /
    • 2016
  • This paper aims to discuss the Non Darcy boundary layer flow of non-conducting viscous fluid with magnetic ferroparticles over a permeable linearly stretching surface with ohmic dissipation and mixed convective heat transfer. A magnetic dipole is applied "a" distance below the surface of stretching sheet. The governing equations are modeled. Similarity transformation is used to convert the system of partial differential equations to a system of non-linear but ordinary differential equations. The ODEs are solved numerically. The effects of sundry parameters on the flow properties like velocity, pressure, skin-friction coefficient and Nusselt number are presented. It is deduced the frictional resistance of Lorentz force decreases with stronger electric field and the trend reverses for temperature. Skin friction coefficient increase with increase in ferromagnetic interaction parameter. Whereas, Nusselt number decrease.

Ultrasonic-detecting Characteristics by Partial Discharge using the Fiber Mach-Zehnder Interferometerin Insulating Oil (광섬유 Mach-Zehnder 간섭계를 이용한 부분방전 초음파 검출특성)

  • 심승환;이광식;이상훈;김달우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2002년도 학술대회논문집
    • /
    • pp.325-328
    • /
    • 2002
  • The partial-discharge(PD) is accompanied by physical and chemical phenomena, such as heat, light, noise, gas, chemical transformation, electric current, and electromagnetic radiation. The PD can be detected by measuring one of these changes. Although some techniques are employed in this purpose, several obstacles interfere with an on-line measurement. Now a fiber-optic sensor for detecting ultrasonics is suggested for the on line measurement system with high accuracy. In this paper, an optical fiber sensor utilizing the principal of Mach-Zehnder interferometer was proposed to detect the discharge signal.

  • PDF

A Fiber-Optic Sensor for Ultrasonic Measurement (광섬유 센서를 이용한 초음파 검출)

  • Sim, S.H.;Lee, K.S.;Lee, D.I.;Lee, S.H.;Kim, D.W.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1715-1717
    • /
    • 2001
  • The partial-discharge(PD) is accompanied by physical and chemical phenomena, such as heat, light, noise gas, chemical transformation, electric current, and electromagnetic radiation. The PD can be detected by measuring one of these changes. Although some techniques are employed in this purpose, several obstacles interfere with an on-line measurement. Now, a fiber-optic sensor for detecting ultrasonics is suggested for the on line measurement system with high accuracy. This paper describes the basic principles fiber-optic sensor for ultrasonic measurement.

  • PDF

Characteristics of Heat Recovery Rate and Fouling according to Structures and Materials in Heat Exchangers (열교환장치의 구조 및 재질에 따른 열회수율과 파울링의 발생 특성)

  • Kim, Hyun-Sang;Kim, Yong-Gu;Bong, Choon-Keun;Lee, Myong-Hwa
    • Resources Recycling
    • /
    • 제24권2호
    • /
    • pp.3-12
    • /
    • 2015
  • We researched characteristics of heat recovery rate and fouling according to structures and materials in heat exchangers like water preheater and air preheater. Economizer and air preheater have used in thermal electric power plant. we made small incinerator and heat exchangers to carry out simulated experiment. We observed fouling formation and change of heat recovery rate, combusting powdered coal for 24 hr. In economizer, fin tube type had the largest amount of fouling formation, followed by tube line type > pipe type > auto washing type according to structures. As heat recovery rate, fin tube showed highest recovery rate, followed by auto washing type > pipe type > tube line type. In air preheater, fin tube type had the largest amount of fouling formation, followed by fin plate type > pipe type > pipe type coated by teflon > pipe type coated by ceramic according to structures. And then, heat recovery rate showed the same oder.