• Title/Summary/Keyword: Electric Generator

Search Result 924, Processing Time 0.022 seconds

Electrical Properties of Wet Bars in Water-cooled Generator Stator Windings (흡습된 수냉각 발전기 고정자 권선의 전기적 특성)

  • Kim, Byeong-Rae;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.817-823
    • /
    • 2012
  • Insulation breakdown of water-cooled generator stator windings occurs frequently due to leakage of cooling water and absorption into the insulation material. Leakage and absorption problems of water-cooled stator windings are often found during regular preventive maintenance. To evaluate cooling water leakage and absorption, diagnostic tests were performed on two water-cooled turbine generators, which have been in service for 13 and 17 years, respectively. The test results of the measured electrical properties such as dissipation factor($tan{\delta}$), capacitance and AC leakage current for water-cooled generator stator windings with wet bars are reported in this paper.

Design of Wave Energy Extractor with a Linear Electric Generator -Part II. Linear Generator (선형발전기가 탑재된 파랑에너지 추출장치 설계 -II. 선형발전기)

  • Cho, Il Hyoung;Choi, Jang Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.174-181
    • /
    • 2014
  • Design procedure of LEG(Linear Electric Generator) is introduced by performing the time-domain analysis for the heaving motion of a floating buoy coupled with LEG. A vertical truncated buoy is selected as a point absorber and a double-sided Halbach array mover and cored slotless stator is adopted as a linear electric generator. LEG with a double-sided Halbach array mover and cored slotless stator is designed with the input data such as the heave motion velocity and wave exciting forces in time-domain. The validity of designed LEG is confirmed by performing generating-characteristic-analysis under the sinusoidal motion of a buoy, based on the numerical techniques such as FE(Finite Element) analysis. In particular, an ECM(Equivalent Circuit Method) is employed as the design tool for the prediction of generating characteristics under irregular wave conditions. Finally, we confirm that the ECM gives reasonable and fast results without sacrifice of accuracy.

A Study on Design of IED for Generator Protection Panel (발전기보호반을 위한 IED의 설계에 관한 연구)

  • Park, Chul-Won;Park, Sung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.133-138
    • /
    • 2013
  • A large generator is an important role in transferring an electric power to power system. The IEDs of large generator often use microprocessor technology to obtain a digital relay system with a wide range of measuring, protection, control, monitoring, and communication functions. However, all generator protection and control systems in Korea imported from abroad and are being operated. In order to reduce the large expense and improve the reliable operation, development of generator protection and control system by domestic technology is required. This paper deals with the design of the IED of generator protection panel for development of generator protection and control system. The major emphasis of the paper will be on the description of hardware and signal processing test results and measurement accuracy of the prototype IED. By developing of generator IED based on DSP and microprocessor, replacement of the generator protection panel imports are expected to be effective.

Dynamic Economic Dispatch and Control of a Stand-alone Microgrid in DongAo Island

  • Ma, Yiwei;Yang, Ping;Guo, Hongxia;Wang, Yuewu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1432-1440
    • /
    • 2015
  • A dynamic economic dispatch and control method is proposed to minimize the overall generating cost for a stand-alone microgrid in DongAo Island, which is integrated with wind turbine generator, solar PV, diesel generator, battery storage, the seawater desalination system and the conventional loads. A new dispatching strategy is presented based on the ranking of component generation costs and two different control modes, in which diesel generator and battery storage alternate to act as the master power source to follow system power fluctuation. The optimal models and GA-based optimization process are given to minimize the overall system generating cost subject to the corresponding constraints and the proposed dispatch strategy. The effectiveness of the proposed method is verified in the stand-alone microgrid in DongAo Island, and the results provide a feasible theoretical and technical basis for optimal energy management and operation control of stand-alone microgrid.

CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments

  • Jamshidi, Hamed;Nilsson, Hakan;Chernoray, Valery
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.113-123
    • /
    • 2015
  • The efficiency of the ventilation system is a key point for durable and reliable electric generators. The design of such system requires a detailed understanding of the air flow in the generator. Computational fluid dynamics (CFD) has the potential to resolve the lack of information in this field. The present work analyses the air flow inside a generator model. The model is designed using a CFD-based approach, and manufactured by taking into consideration the experimental and numerical requirements and limitations. The emphasis is on the possibility to accurately predict and experimentally measure the flow distribution inside the stator channels. A major part of the work is focused on the design of an intake and a fan that gives an evenly distributed flow with a high flow rate. The intake also serves as an accurate flowmeter. Experimental results are presented, of the total volume flow rate, the total pressure and velocity distributions. Steady-state CFD simulations are performed using the FOAM-extend CFD toolbox. The simulations are based on the multiple rotating reference frames method. The results from the frozen rotor and mixing plane rotor-stator coupling approaches are compared. It is shown that the fan design provides a sufficient flow rate for the stator channels, which is not the case without the fan or with a previous fan design. The detailed experimental and numerical results show an excellent agreement, proving that the results reliable.

Study on the Internal Flow of an Electric Oven with Variation of Steam Outlet Position (전기오븐의 스팀 출구위치에 따른 내부유동에 대한 연구)

  • Park, Young Hun;Kim, Yu Jin;Jung, Young Man;Park, Warn-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.450-456
    • /
    • 2013
  • The composite electric oven is one of the fixing utensil, various functions are required. Steam generating function, which is one of its functions, and allows various food cooking. The location of the outlet of the steam generator is designed around ease of installation, consideration of internal fluid is not. Distribution of the steam can not be non-uniformly. Accordingly, cooking time becomes longer, the energy consumption increases. As a result of the analysis, it was confirmed stagnation phenomenon of the internal flow through the interpretation of the calculations for the position of the outlet of the steam generator existing. Further, by computing the analysis of various locations of the outlet of the steam generator, we investigated the distribution and characteristics of the internal flow.

Performance Experiment of Generator for Household Absorption Chiller and Heater (가정용 흡수식 냉난방기 개발을 위한 재생기 성능실험)

  • Yu, Sun-Il;Kwon, Oh-Kyung;Yoon, Jung-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1347-1354
    • /
    • 1999
  • Recently, the markets of the air conditioner are enlarging. The market size will reach 2.0 billion won in 2000. Electric heat pumps have been utilized as main residential air conditioners. especially in Korea. They cause a surge up electric power demand during summer. Moreover, the use of HCFCs and HFCs causes serious problem to the global environment such as global warming and ozone layer destruction. Absorption chiller and heater could solve such problems. It was built and tested for analyzing the performance of the generator for absorption chiller and heater. Experiment was done with a high temperature generator, a low temperature generator, heat exchangers, a condenser and a solution tank. It was tested that the double effect series flow cycle with two kinds of solution cycle. Solution cycle B showed better than solution cycle A. Two kinds of heat exchanger were used, where one's heat transfer area is bigger than the other. Bigger one increased a little performance of absorption chiller and heater. But it was not economical. From this study, we got that the coefficient of performance(COP) is 0.82 and the capacity is 7.24 kW for an absorption chiller and heater.

Control of Linear Generator Using Hydrogen as a Fuel (수소연소를 이용한 선형발전기 제어)

  • Lee, Seung-Hee;Jeong, Seong-Gi;Choi, Ju-Yeop;Choi, Jun-Young;Oh, Si-Doek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.391-394
    • /
    • 2008
  • Global warming and air pollution have increased the amount $CO_2$ in the atmosphere. In order to decrease the amount of $CO_2$, lots of researches are conducted toward using Hydrogen energy. Because of its high efficiency energy level and environmental friendly features, many companies have researched on developing hydrogen engine system and distributed generation system. Especially, the focus of this research provides the operation method of linear generator for hydrogen fuel combustion linear engine. During an ignition, linear generator is operated by motor to create the initial condition of engine combustion. Once the engine combustion is stabilized, the generator supplies electric power to grid. In order to stabilize the engine, linear generator is required to control mover frequency, direction, and force; Hence the PCS(Power Conversion System) place three H-bridge type inverter stacks in parallel to control phase current independently. As well, by using Back-to-Back method, it can receive electric power from both end.

  • PDF

The Design, Manufacture and Applications of a Gap Noise Generator for Testing the Characteristics of EMI from Transmission Lines (송전선로 EMI 특성 실험용 인공잡음발생장치 설계, 제작 및 적용)

  • Ju, Yun-Ro;Yang, Gwang-Ho;Myeong, Seong-Ho;Lee, Dong-Il;Sin, Gu-Yong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.1
    • /
    • pp.23-28
    • /
    • 2002
  • In order to survey the radiation characteristics of pure line noise of unwanted noise from overhead high voltage AC transmission lines, a disk type gap noise generator was manufactured. Disk size which decides capacitance between the noise generator and earth was selected through preliminary indoor experiments and analysis by using surface charge method. The capacitance is one of principal parameters related to the injection of a proper noise current into lines. On the basis of the capacitance obtained from calculation, 5mm of space was given to the gap of the noise generator to be installed o test line and an aluminum disk of 60cm radius was made. The field experiments were performed with the noise generator hung on the Kochang 765 kV full scale test line. As the results, the useful data which can be used to analysis the radiation characteristics of noise from transmission lines were obtained. Those are the directivity of antenna toward the line, lateral profiles, frequency spectra, height pattern and so on.

Design and Analysis of Load Shedding for the Electric Propulsion System (전기추진시스템의 부하저감 설계 및 해석)

  • Kim, Kyung-Hwa;Kim, Dae-Heon;Lee, Seok-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.971-977
    • /
    • 2015
  • The electric propulsion system requires more reliability and safety than the conventional propulsion system because any sudden changes of electric system would bring tremendous effects on the ship's safety and propulsion. So it is very important to consider the potential transient effects. This paper discusses one of the worst electric accident. That is, one or two of generators are out of service in normal seagoing condition. And the appropriate measures are simulated in order to prevent the frequency decline that can bring the other generator's tripping. In addition, the relation between the transient effects and the major factors(inertia of generator/motors, governor's drooping characteristic and response speed) are also identified using the ETAP software.